

OPEN POSSIBILITIES

MULTUS U Series

MULTUS © 3000 MULTUS © 4000 MULTUS © 5000

Intelligent Multitasking Machines

MULTUS © Series

MULTUS @3000/MULTUS @4000/MULTUS @5000

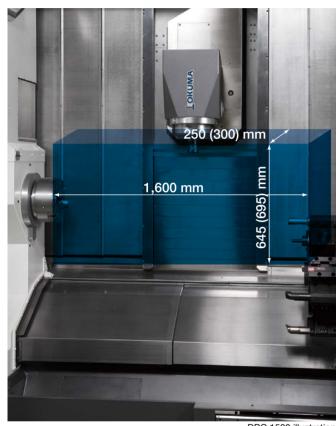
Intelligent Multitasking Machines

Collision Avoidance System

Highly accurate, rigid, hi-tech, and process-intensive All that's required and packed in the ultimate multitasking machine

MULTUS (D4000 <DBC 1,500 mm 2SW>

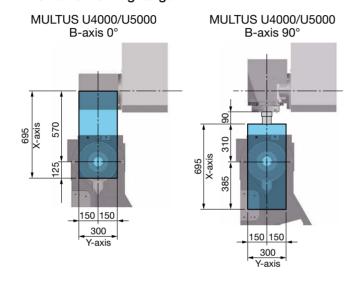
- Flexible machining from all directions
- Max productivity for milling and turning
- 2 saddles for minimum cycle times
- Process-intensive machining that goes beyond the framework of multitasking machines
- To support long and stable machining accuracies
- Maximizing machine tool performance
- Shorter lead-times with easy first part machining

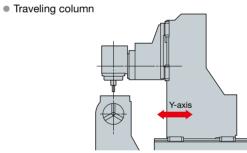

25 diverse variations in all

MULTUS U3000 MULTUS U4000 **MULTUS U5000** Distance between centers (DBC) 1000 1500 1500 2000 1500 2000 Upper turret Chuck work (1S) Tailstock (C) Opposing spindles (W) Tailstock (C) Upper and lower turrets (2S) Opposing spindles (W)

<DBC 2,000 mm 2SC>

Flexible machining from all directions


Tough cutting in entire Y-axis range



DBC 1500 illustration () figures for the MULTUS U4000/U5000

With the ideal, large work envelope for lots of milling of complex parts. The class best Y-axis travel is fully utilized with a highly rigid traveling column, for powerful cutting along the entire Y axis.

■ X-/Y-axis working range

Wide B-axis swing: 240°

The wide 240-degree swing of the B-axis spindle allows it to have equivalent machining areas for both the main and opposing spindle. With the NC B-axis, roller gears are used to achieve "0" backlash during B-axis drive, and highly accurate 5-axis machining.

Superb C-axis positioning accuracy: 0.0001° control

As an option*, a highly accurate C-axis function is used for both the main and opposing spindles. This will support end-users requiring very accurate machining of component shapes that are quite complex. Moreover, heavy-duty milling, with a solid retention mechanism, makes possible applications that require both high accuracy and high efficiency.

* Standard in certain markets.

240°

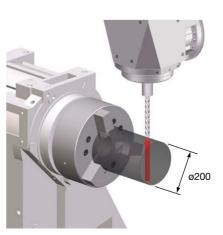
High-efficiency production for a wide variety of machining applications with process-intensive machining

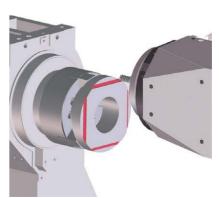
Spline machining

Done by mounting a hob cutter on a milling tool spindle and synchronizing it to C-axis rotation (optional hobbing function).

C-/B-axis indexing with X-Y-Z axes generated to cut a spiral bevel gear.

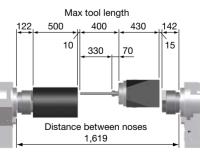
Workpiece samples




Machining examples

■ Thru-holes up to Ø200 mm Long X-axis travel makes possible side-face thru-holes in Ø200 mm workpieces—without C-axis rotation. (MULTUS U4000/U5000)

■ Maximum □230 mm contouring Cutting the outline of a □230 mm workpiece without C-axis rotation is also possible.


Square parts can be cut with machining-center-equivalent geometric accuracy. (MULTUS U4000/U5000)

When using a ø20 mm end mill

■ Deep drilling: 330 mm

With the DBC 1,000 mm machine, 500 mm long workpieces can be drilled (330 mm tool projection) to make deep holes. (MULTUS U3000 with 1SW specifications, standard main and opposing spindles)

Unit: mm

Outstanding productivity for turning and milling

Achieving highly efficient cutting of difficult-to-machine materials

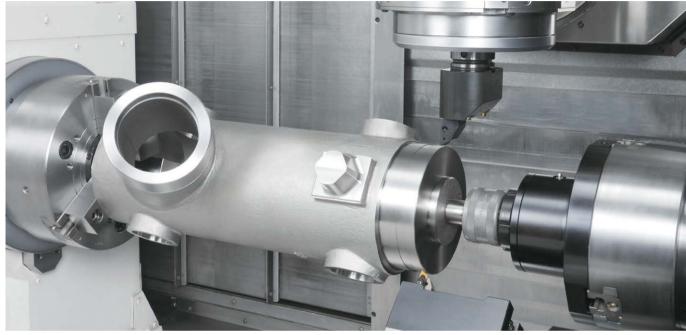
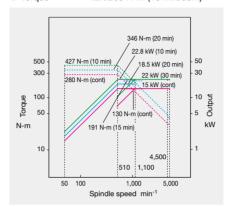


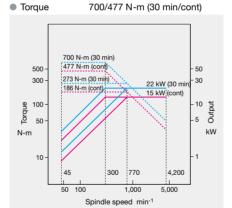
Photo shows a tailstock attachment mounted on the opposing spindle with tailstock control.


		MULTUC HOOO	MULTUS HADOO/MULTUS HEDDO
		MULTUS U3000	MULTUS U4000/MULTUS U5000
Turning		Heavy-duty: 4.8 mm ²	Heavy-duty: 5.0 mm ² (ø160 spindle)*
● OD (S45C)	Cutting Speed Cutting depth Feed rate	150 m/min 8 mm 0.6 mm/rev	150 m/min 8 mm 0.625 mm/rev
● Insert drill (S45C)	Cutting Speed Feed rate	ø63 Throwaway 150 m/min 0.23 mm/rev	ø63 Throwaway 150 m/min 0.23 mm/rev
Milling		Chip volume: 604 cm³/min	Chip volume: 604 cm³/min
● End milling (S45C)	Tooling Cutting Speed Cutting depth Feed rate Removal Rate	 Ø20-mm end mill 7-flute 192 m/min 6.5 x 20 mm 1.52 mm/rev 604 cm³/min 	 Ø20-mm end mill 7-flute 192 m/min 6.5 × 20 mm 1.52 mm/rev 604 cm³/min
● Face milling (S45C)	Tooling Cutting Speed Cutting depth Feed rate Removal Rate	ø50 milling cutter 5-flute 300 m/min 6 × 35 mm 2,865 mm/min 602 cm ³ /min	ø50 milling cutter 5-flute 300 m/min 6 x 35 mm 2,865 mm/min 602 cm³/min
• Insert drill (S45C)	Cutting Speed Feed rate	ø50 Throwaway 150 m/min 0.12 mm/rev	ø50 Throwaway 150 m/min 0.12 mm/rev
TAP (S45C)		M30 P3.5	M30 P3.5

^{*} Optional on MULTUS U4000, standard on MULTUS U5000

MULTUS U3000 ø120-mm Std spindle ø120-mm Standard opposing spindle (1S)

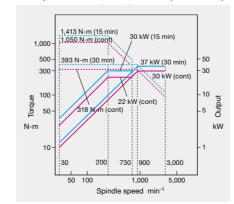
Spindle speed 5.000 min⁻¹


Output 22/15 kW (30 min/cont) Torque 427/280 N-m (10 min/cont)

MULTUS U4000 ø140-mm Std spindle ø140-mm Standard opposing spindle (1S)

Spindle speed 4,200 min⁻¹

22/15 kW (30 min/cont) Output

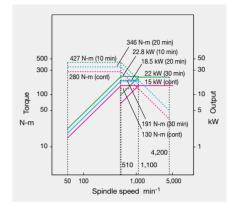


MULTUS U5000 ø160-mm Std spindle

Spindle speed 3,000 min⁻¹

Output 37/30 kW (30 min/cont)

Torque 1,413/1,050 N-m (15 min/cont)

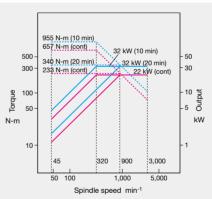


MULTUS U3000 ø140-mm Big-Bore spindle ø120-mm Opposing big bore spindle (1S)

Spindle speed 4.200 min⁻¹

Output 22/15 kW (30 min/cont)

Torque 427/280 N-m (10 min/cont)

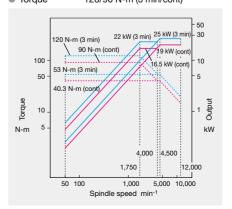

MULTUS U4000 ø160-mm Big-Bore spindle ø160-mm Opposing big bore spindle (1S) MULTUS U5000

ø160-mm Standard opposing spindle (1S)

Spindle speed 3,000 min⁻¹

Output 32/22 kW (20 min/cont)

Torque 955/657 N-m (10 min/cont)

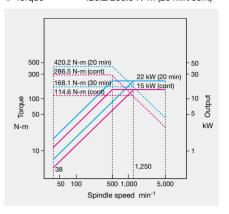


MULTUS U3000/U4000/U5000 Upper turret M-spindle

Spindle speed 12,000 min⁻¹

Output 25/19 kW (3 min/cont)

120/90 N-m (3 min/cont) Torque


MULTUS U3000

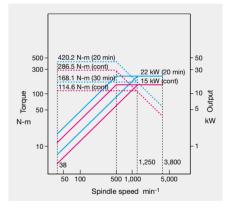
ø100-mm Standard opposing spindle (2S)

Spindle speed 5,000 min⁻¹

Output 22/15 kW (20 min/cont)

Torque 420.2/286.5 N-m (20 min/cont)

MULTUS U4000


ø120-mm Standard opposing spindle (2S) MULTUS U5000

ø120-mm Standard opposing spindle (2S)

Spindle speed 3,800 min⁻¹

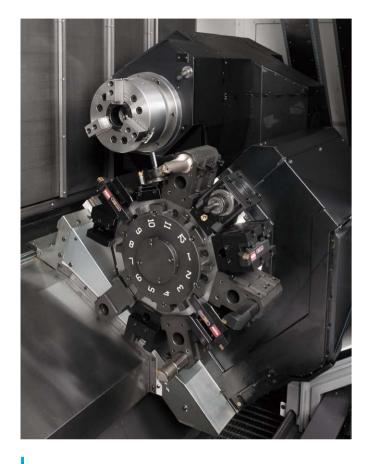
Output 22/15 kW (20 min/cont)

Torque 420.2/286.5 N-m (20 min/cont)

MULTUS U3000/U4000/U5000 Lower turret M-spindle

Spindle speed 6,000 min⁻¹

Output 5.5/3.7 kW (2 min/cont)


Torque 31.3/20.9 N-m (2 min/cont)

5.5 kW (2 min) 3.7 kW (dont) N-m kW 1.000 5.000 10.000

Spindle speed min-1

Note: The "actual data" referred to above for this brochure represent examples, and may not be obtained due to differences in specifications, environmental conditions during measurement, tooling, cutting, and other conditions

2 saddles for minimum cycle times

Powerful cuts from a rigid lower turret

In variable-mix, variable-volume production, cycle times can be minimized, and high productivity can be achieved with a 2-saddle machine. The lower turret is very sturdy, and supports real milling and turning jobs. (The opposing spindle capacity and working range near the opposing spindle differ with 1SW and 2SW specifications.)

■ Turning specs Lower turret

Many different types of machining are possible with 12 tools

Turret type: V12 turretOD tool size: □25 mmBoring bar size: Ø40 mm

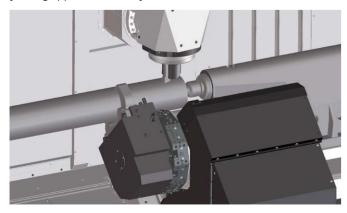
■ Multitasking specifications Lower turret

A milling tool can be attached to the lower turret

Turret type: V12 multitasking turret

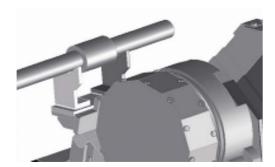
Milling tool spindle speed: 6,000 min⁻¹

Milling tool spindle motor: 5.5/3.7 kW (2 min/cont)


Note: With opposing spindle specifications only

Lower turret makes many types of machining possible

Steadyrest attachment (Optional)


A steadyrest can be attached to the lower turret to support the workpiece. Long or single-side clamped workpieces can then be cut with no chatter occurring.

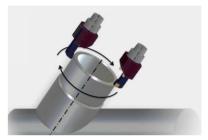
[Turning applications turret]

Mounted workrest (Optional)

A workrest can also be mounted to the lower turret, to help automate workpiece load/unload operations—and reduce operator burden.

■ Tailstock attachment (Optional)

A tailstock attachment can be mounted on either side of the lower turret; facing the main spindle on the left or the opposing spindle on the right. The tailstock attachment uses a revolving center.


Achieves process-intensive machining beyond the framework of multitasking machines

Sloped axis turning Turn-Cut (Optional)

Turn-Cut is an original Okuma technology that enables turning with milling spindle. The circular turning of the feed axis and the spindle indexing angle are simultaneously controlled so that the tool edge is always facing the center of the milling spindle circular turning. Sloped axis turning can be done by sloping the B axis. Moreover, machining of any diameter can be done with a single tool. Inside and outside diameter machining that is larger than the maximum tool diameter can be done.

Note: Turn-Cut specifications require technical consultations.

Turning can be done on a sloped axis

High accuracy gear cutting with a multitasking machine Gear Machining Package (Optional)

Gear cutting that previously required complex programming can now be done with ease. With easy programming, simply input the tool type, gear data, and cutting conditions to achieve highly accurate machining, reducing programming time to about one-tenth that of manual input. Process-intensive machining is achieved, including the gear cutting that used to be done on expensive special-purpose machines.

Skiving (OD/ID splines)

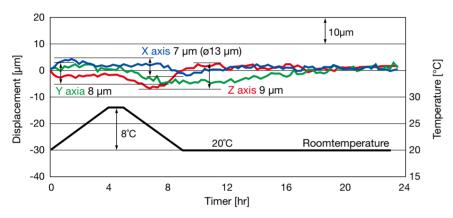
Hobbing

Input screen

3D measuring for multitasking machines NC Gage (Optional)

Twenty types of geometrical accuracy, such as hole position and flatness, can be measured on the machine, greatly reducing workload before and after gauging. A program to measure the positional relationship between geometric tolerance and workpiece shape is automatically produced by teaching. Data storage of the measurement results is possible.

To support long and stable machining accuracies



Thermal deformation over time: less than 10 µm

Thermo-Friendly Concept

Okuma's "Thermo-friendly" concept enables remarkable machining accuracy through original structural design and thermal deformation control technology. Free from troublesome dimensional compensation and warm-up, it exhibits excellent dimensional stability even during consecutive operation over long periods and environmental temperature change in the plant.

Less than $10\ \mu m$ Thermal deformation over time

[Operating conditions]

Main spindle	3,800 min ⁻¹	2.5 min
Milling tool spindle	6,000 min ⁻¹	6 min
	10,000 min ⁻¹	6 min
Interval		0.5 min
Cycle time	Total	15 min
Coolant: Used		

■ Eliminate waste with the Thermo-Friendly Concept

In addition to maintaining high dimensional accuracy when room temperature changes, Okuma's Thermo-Friendly Concept provides high dimensional accuracy during machine startup and machining restart.

To stabilize thermal deformation, warming-up time is shortened and the burden of dimensional correction during machining restart is reduced.

Machine startup Machining restart Room temp change

High dimensional stability

TAS-C

(Thermo Active Stabilizer-Construction)

The machine is optimally controlled and machining accuracy is maintained when the ambient temperature changes.

TAS-S

9

(Thermo Active Stabilizer-Spindle)

Even when the spindle speed changes frequently, the thermal deformation of the milling tool spindle is accurately controlled.

Gauging and compensation of geometric error 5-Axis Auto Tuning System (Optional)

On multitasking machines there is "geometric error," such as spindle misalignment, that have huge effects on machining accuracy. The 5-Axis Auto Tuning System measures geometric error with a touch probe and datum sphere, and tunes multitasking machines for better operating accuracy through compensation control using the measurement results. This helps to achieve a higher level of 5-axis machining accuracy.*

Manual adjustment without 5-AATS Machining surface error Max 25 µm

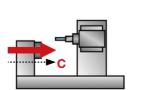
After using 5-AATS

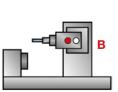
Max 10 μm
(Actual data with MULTUS U4000)

In multi-sided machining with tools inclined at different angles for each surface, accuracy is improved after use of the 5-Axis Auto Tuning System.

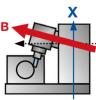
Note: May not be available for certain specifications.

■ Anyone can automatically check for geometric error quickly and easily


Manual measurement and adjustment of geometric error is bothersome and time-consuming. The 5-Axis Auto Tuning System conducts automatic tuning to correct geometric error in a short time.


key and cycle start button

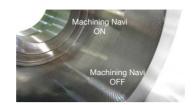
Examples of geometric error


chuck and move probe directly above it

Misalignment of C-axis centerline and X-axis

Positional error of B-axis unit along the Z-axis

auto setting of compensation


Perpendicularity of B-axis unit to X-axis

Maximizing machine tool performance

Machining Navi Cutting Conditions Search Function (Optional) With optimal cutting conditions: longer tool life, shorter cycle time

Machining Navi instantly searches for the optimum cutting conditions and "visualizes" the machining status to help maximize machine and tooling capabilities, and provide improvements in productivity.

For turning

Chatter-free applications for lathes Machining Navi L-gII (guidance)

Chatter in during turning can be suppressed by changing spindle speeds to the ideal amplitude and wave cycle.

Threading chatter can be easily controlled by anyone Machining Navi T-g (threading)

In the threading cycle, chatter during threading is controlled through appropriate change of the spindle speed in each pass.

For milling

Adjust cutting conditions while monitoring the data Machining Navi M-gII+

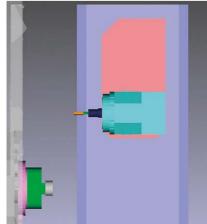
(Optimum spindle speed/harmonic spindle speed control)

From chatter noise picked up by the microphone, Machining Navi will display the best options for chatter-free spindle speed. The operator can select a recommended speed and immediately confirm the result

Simple, auto-mode—leave it to the machine Finding optimum cutting conditions quickly Machining Navi M-i

(Intelligently optimized spindle speed control)

Chatter vibration is measured by built-in sensors, and spindle speed is automatically changed to the optimum speed. In addition, advanced graphics of the optimal cutting conditions represent effective alternatives to suppress various chatter characteristics throughout the low to high speed zones.


Collision Avoidance System

Setup, trial cut times reduced by 40%—preventing collisions

NC controller (OSP) with 3D model data of machine components—workpiece, tool, chuck, fixture, headstock, turret, tailstock-performs real time simulation just ahead of actual machine movements. It checks for interference or collisions, and stops the machine movement immediately before collision. Machinists (novice or pro) will benefit from reduced setup and trial machining times, and the confidence to focus on making parts. Troublesome settings eliminated. With easy tool preps, you can use the preset tool data just as it is.

Eliminate collision-related machine down time

When a multitasking machine breaks down, both L and M machining stop; causing large productivity losses. The Collision Avoidance System simply prevents this problem from occurring.

Virtual machine (advance simulation)

Actual machine

Shorter lead-times with easy first part machining

With keyboard operations reduced by: 1/2

For multitasking machines that handle high-mix low volume production, the Okuma Control considerably reduces the cost and time required to perform first-part trial cuts. Tool preparations, forming soft-jaws, zero offsets, all of the related machining preps required for the job can be done much easier simply because the CNC was produced by a machine tool manufacturer who has the experience and know-how to reduce keyboard input operations by half compared with the previous control.

Easy tool preparations

machine, simply select it from among the registered tools. ATC manual operation does not require inputting the tool number. Just select the tool from the list and press the function key. (Touch Setter is optional.)

Just after loading a tool in the

Easy zero offsets and machining starts

A simple function key operation is all it takes to shift a zero offset to either the left or right end of a workpiece. The required zero offset will be calculated automatically based on jaw and workpiece lengths. (when the tool offset is set with reference to the turret tool mounting surface)

Define machining requirements

Forming soft jaws

Work load reduced by operator-friendly designing

Eliminates troublesome tool checks Tools can be easily and quickly loaded from the machine front; freeing the operator for other production tasks.

Reduced setup times

With considerably improved access to the spindle, and easier workpiece loading/unloading.

12

Maintenance

Service functions are concentrated in the maintenance area on the front side of the machine—a machine layout designed to make daily inspections easier.

OSP suite osp-p300sA


The Next-Generation Intelligent CNC

With revamped operation and responsiveness ease of use for machine shops first!

Smart factories are using advanced digitization and networking (IIoT) in manufacturing to achieve enhanced productivity and added value. The OSP has evolved tremendously as a CNC suited to advanced intelligent technology. Okuma's new control uses the latest CPUs for a tremendous boost in operability, rendering performance, and processing speed. The OSP suite also features a full range of useful apps that could only come from a machine tool manufacturer, making smart manufacturing a reality.

Smooth, comfortable operation with the feeling of using a smart phone

Improved rendering performance and use of a multi-touch panel achieve intuitive graphical operation. Moving, enlarging, reducing, and rotating 3D models, as well as list views of tool data, programs, and other information can be accomplished through smooth, speedy operations with the same feel as using a smart phone. The screen display layout on the operation screen can also be changed to suit operator preferences and customized for the novice and/or veteran machinists.

Note: 19-in. operation panel (Optional) screen shots. Collision Avoidance System (Optional) shown above.

"Just what we wanted."— Refreshed OSP suite apps


This became possible through the addition of Okuma's machining expertise based on requests we heard from real, machine-shop customers. The brain power packed into the CNC, built by a machine tool manufacturer, will "empower shop floor" management.

Spindle Output Monitor

ncreased productivity through visualization of motor power reserve

The specified spindle output (red line: short time rating, green line: continuous rating) and the spindle output in current cutting (blue circle) are simultaneously displayed on the screen, for real-time view of power reserve during cutting. This allows speeding up cutting by increasing the spindle speed or feed rate while monitoring the graph to ensure that the blue circle does not cross the lines.

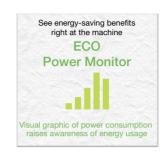
Scheduled Program Editor Easy programming without keying in code

13

E-mail Notification Monitoring utilization status even when away from the machine

Connect Plan Get Connected, Get Started, and Get Innovative with Okuma "Monozukuri"

Connect, Visualize, Improve

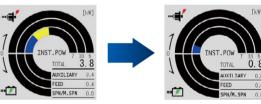

Okuma's Connect Plan is a system that provides analytics for improved utilization by connecting machine tools and visual control of factory operation results and machining records. Simply connect the OSP and a PC and install Connect Plan on the PC to see the machine operation status from the shop floor, from an office, from anywhere. The Connect Plan is an ideal solution for customers trying to raise their machine utilization.

FCOsuite

Next-Generation Energy-Saving System

ECO Idling Stop Accuracy ensured, cooler off

Intelligent energy-saving function with the Thermo-Friendly Concept. The machine itself determines whether or not cooling is needed and cooler idling is stopped with no loss to accuracy. (Standard application on machines with TAS-S/H1)

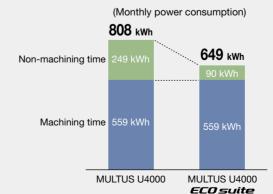

Cooling status of milling spindle monitored Cooling not required Spindle cooler Cooling not required

Turning spindle cooling status monitored

ECO Power Monitor On-the-spot check of energy savings

Power is shown individually for spindle, feed axis, and peripheral equipment on OSP operation screen. The energy-saving effect from peripheral equipment stopped with ECO Idling Stop can be confirmed on the spot.

Power Monitor confirmation example



Before ECO Idling Stop After ECO Idling Stop

The indicated values are one example

Reduction in power consumption (example)

• Operating time 94 h, Non-operating time 66 h, Total 160 h (8 × 20 days)

Effects of ECO suite

Energy consumption during non-machining time greatly reduced with "ECO Idling Stop," which shuts down each piece of peripheral equipment not in use.

(Non-cutting time)

159 kWh (64%) reduction! *ECO Idling Stop

*Calculated from actual power consumption data. Power consumption will differ depending on machine specifications and usage status.

Machine Specifications

						S U3000						
Item				SC .		SW	28			SW		
			1000	1500	1000	1500	1000	1500	1000	1500		
Capacity	Swing over saddle	mm (in)	1 000	ø650 (1 500		o650 (25.59)				
	Distance between center	rs mm (in)	1,000 (39.37)	1,500 (59.06)	1,000 (39.37)	1,500 (59.06)	1,000 (39.37)	1,500 (59.06)	1,000 (39.37)	1,500 (59.06)		
	Max machining dia	mm (in)	(33.37)		25.59)	(55.00)		650 (25.59)*1				
	Max machining length	mm (in)	1,000	1,500	1,000	1,500	1,000	1,500	1,000	1,500		
	Trian macriming for igni		(39.37)	(59.06)	(39.37)	(59.06)	(39.37)	(59.06)	(39.37)	(59.06)		
Travels	X axis	mm (in)	(, , ,	645 (2		(====)		: 645 (25.39)				
	Z axis	upper: mm (in)	1,100	1,600	1,100	1,600	1,100	1,600	1,100	1,600		
			(43.31)	(62.99)	(43.31)	(62.99)	(43.31)	(62.99)	(43.31)	(62.99) 1,584		
		lower: mm (in)			_			961 1,461 1,100				
		<i>(</i> ;)				050 (0.04) ((37.83)	(57.52)	(43.31)	(62.36)		
	Y axis W axis	mm (in)			1 205	1,594	±125 (4.92))		1 100	1 504		
	w axis	mm (in)	-	-	1,325 (52.17)	(62.76)	-	-	1,100 (43.31)	1,584 (62.36)		
	B-axis / indexing angle	degree				+210 (min co	ntrolled and	e 0 001)	(43.31)	(02.30)		
	C-axis / indexing angle	degree				(min control						
Spindle	Speed	min ⁻¹					5,000	.,				
	Speed ranges				2 auto rar	nges (2-spee		switching)				
	Nose shape					JIS	A2-6					
	Taper bore	mm (in)					(3.15)					
	Bearing dia	mm (in)					(4.72)			5.005		
Opposing	Speed sanger	min ⁻¹	-	_		5,000	-	-		5,000		
spindle*	Speed ranges		_	_		ranges d motor		_		ranges ed motor		
						itching)				vitching)		
	Nose shape					A2-6	_	_		A2-6		
	Taper bore	mm (in)		_		(3.15)		_		(2.44)		
	Bearing dia	mm (in)		-		(4.72)	-	-		(3.94)		
Turret	Туре			H				Upper: H1,	Lower: V12			
(tool spindle)	No. of tools			L/I	M: 1			Upper: L / M	: 1, Lower: 1	2		
	Tool shank dimensions	mm (in)					5 (1 × 1)					
	ID tool shank diameter	mm (in)	ø40 (1-1/2) Upper: 50 to 12,000									
	Milling tool spindle Milling tool spindle spee	min ⁻¹		Upper: 2 auto ranges (2-speed motor coil switching)								
Feed rates	X, Z, Y axes	upper: m/min			ppoi. 2 date			JOII SWITCHING	3/			
						X: 50, Z:	: 50, Y: 40					
		lower: m/min		– X: 25, Z: 40					Z: 40			
	W-axis	m/min	20	12		10	20	12	,	30		
			(tailstock)	(tailstock)			(tailstock)	(tailstock)	`			
T-31-41-	C, B axes	min ⁻¹	1.4T 1			C: 200	, B: 30					
Tailstock	Tapered bore		MT No. 5 (revolving center)			_		No. 5 g center)		_		
	Travel	mm (in)	1,186	1,594			961	1,359.5				
	II dvoi	11111 (111)	(46.69)	(62.76)		-	(37.83)	(53.52)	-			
ATC	Tool shank		, ,	, , , , , ,		HSK	-A63	, , , ,				
	No. of tools	tools	40									
	Max tool dia	mm (in)	ø90 (3.54) (w/o adjacent tools: ø130 (5.12))									
	Max tool length	mm (in)			4	00 (15.75) (fr		e)				
N4 1	Max tool mass	kg (lb)					(22)	1\				
Motor	Main spindle motor Opposing spindle motor	kW (hp)				<u>22/15 (30/20)</u> (30/20)	(30 min/con	t)	22/15	(30/20)		
	Opposing spindle motor	kW (hp)		-		(30/20) n/cont)	-	-	l .	in/cont)		
	Milling tool spindle moto	r kW (hp)				25/19 (33/25) (3 min/cont	١	(20111	iii/Coritj		
	X-, Z-, Y-, B-axis motors					20/10 (00/20		A: 5.2, ZA: 4.	6. Y: 3.5. B: 3	3.0		
		(1-7)	K: 5.2, Z: 4.6,	Y: 3.5, B: 3.	0		A: 6.9, ZA: 6.				
			()	K: 6.9, Z: 6.1,	Y: 4.7, B: 4.	0)	XB: 3.5, ZI	B: 3.5 (XB: 4.	7, ZB: 4.7) (D	BC 1,000)/		
									BC 1,500)			
	W-axis motor	kW (hp)	2.8 (3.7)	(tailstock)	3.5 (4.7)	4.6 (6.1)		(tailstock)	3.5 (4.7)	4.6 (6.1)		
Maabina	Coolant motor (50Hz/60			0.055 /		(0.33/0.33)×1	, U.55/U.75 (C		110.00\			
Machine	Height Floor space	mm (in)		2,955 (<u> </u>		119.29)	Ω		
	Floor space W × D (tank included)	mm × mm (in)		DBC 1,000: 4	i,925 × 2,99: < 117.91)	י		DBC 1,000: 4 (193.90)	+,925 × 3,01 × 118.82)	0		
	TAND (tank included)			DBC 1,500: 5	,	5		DBC 1,500:	,	2		
						-	'			_		
			(213.58 × 117.91) DBC 1,000: 15,500 (34,100)				(213.58 × 121.34) DBC 1,000: 16,500 (36,300)					
	Mass	kg (lb)	Ľ	DBC 1,000: 1	5,500 (34,10	U)	L	1,000: I	o,ɔuu (აo,აu	10)		
CNC	Mass	kg (lb)		DBC 1,000: 1: DBC 1,500: 1		0)		BC 1,500: 1		,		

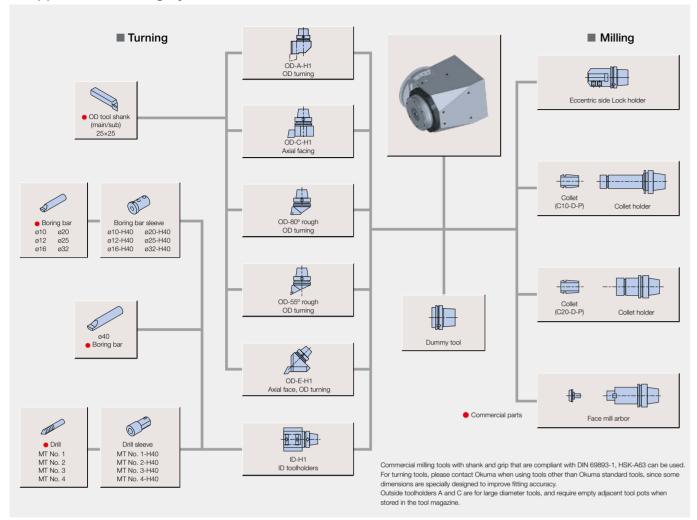
- 1			MULTU	S U4000			
	SC		SW		SC	28	
1500	2000	1500	2000	1500	2000	1500	2000
	ø650	(25.59)			Upper: ø650 (25.59),	Lower: ø320 (12.60)	
1,500	2,000	1,500	2,000	1,500	2,000	1,500	2,000
(59.06)	(78.74)	(59.06)	(78.74)	(59.06)	(78.74)	(59.06)	(78.74)
, -/		(25.59)	. , , ,		Jpper: ø650 (25.59)*1	,	
1,500	2,000	1,500	2,000	1,500	2,000	1,500	2,000
(59.06)	(78.74)	(59.06)	(78.74)	(59.06)	(78.74)	(59.06)	(78.74)
(55.00)		27.36)	(10.14)	(53.00)	Upper: 695 (27.36)		(10.14)
1 000			0.400	1 000			0.100
1,600	2,100	1,600	2,100	1,600	2,100	1,600	2,100
(62.99)	(82.68)	(62.99)	(82.68)	(62.99)	(82.68)	(62.99)	(82.68)
		_		1,461	1,961	1,524*2	2,045*3
		_		(57.52)	(77.20)	(60.00)	(80.51)
			300 (11.81)	(±150 (5.91))			
		1,554	2,054			1,524*2	2,024*3
	-	(61.18)	(80.87)		-	(60.00)	(79.69)
			-30 to +210 (min co	ntrolled angle 0 001	,	(00.00)	(. 0.00)
			360 (min controll)		
				4,200			
		2	auto ranges (2-spee		ng)		
			JIS /	A2-8			
				(3.58)			
				(5.51)			
	_	45 to	4,200	<u> </u>	_	38 to :	3.800
			,				,
			ranges			2 auto	
	-		ed motor	'	-	(2-speed	
			ritching)			coil swi	
	-		A2-8		-	JIS A	
	_	ø91	(3.58)		_	ø80 (3.15)
	_	ø140	(5.51)		_	ø120	(4.72)
	-	11	,	H1. Lov	wer: V12	Upper: H1,	Lower: V12
		M: 1		, 20.	Upper: L / M:		2011011 112
	L/	IVI. I	-05	(4 4)	Opper. L / IVI.	1, LOWEL 12	
				(1 × 1)			
				1-1/2)			
			Upper: 50	to 12,000			
		Uppe	r: 2 auto ranges (2-s	peed motor coil swit	tching)		
X: 50, Z: 50,	X: 50, Z: 40,	X: 50, Z: 50,	X: 50, Z: 40,	X: 50, Z: 50,	X: 50, Z: 40,	X: 50, Z: 50,	X: 50, Z: 40,
Y: 40	Y: 40	Y: 40	Y: 40	Y: 40	Y: 40	Y: 40	Y: 40
		_	I	X: 25, Z: 40	X: 25, Z: 30	X: 25, Z: 40	X: 25, Z: 30
	12			,	12	71. 20, 2. 10	711 20, 21 00
	stock)	30	20		stock)	30	20
(tail	Slocky		0.000	· · · · · · · · · · · · · · · · · · ·	stock)		
		1	U: 200	, B: 30			
				MI	No. 5	_	
	No. 5		_	,			
(revolvii	ng center)		_	,	ig center)		-
				(revolvin 1,359.5	ng center) 1,961		
(revolvii	ng center)		-	,	"		
(revolvii 1,594	ng center) 2,094		_	1,359.5 (53.52)	1,961		
(revolvii 1,594	ng center) 2,094		- HSK	1,359.5 (53.52) -A63	1,961		
(revolvii 1,594	ng center) 2,094		- HSK 4	1,359.5 (53.52) -A63	1,961 (77.20)		
(revolvii 1,594	ng center) 2,094		HSK 490 (3.54) (w/o adjac	1,359.5 (53.52) -A63 0 ent tools: ø130 (5.12	1,961 (77.20)		
(revolvii 1,594	ng center) 2,094		- HSK 490 (3.54) (w/o adjac 400 (15.75) (fr	1,359.5 (53.52) -A63 0 ent tools: ø130 (5.12 om gauge line)	1,961 (77.20)		
(revolvii 1,594	ng center) 2,094		- HSK 4990 (3.54) (w/o adjac 400 (15.75) (fr 10	1,359.5 (53.52) -A63 0 ent tools: ø130 (5.12 om gauge line) (22)	1,961 (77.20)		
(revolvii 1,594	ng center) 2,094		- HSK 4990 (3.54) (w/o adjac 400 (15.75) (fr 10 22/15 (30/20)	1,359.5 (53.52) -A63 0 ent tools: ø130 (5.12 om gauge line) (22)	1,961 (77.20)	-	-
(revolvii 1,594	ng center) 2,094		- HSK 4990 (3.54) (w/o adjac 400 (15.75) (fr 10	1,359.5 (53.52) -A63 0 ent tools: ø130 (5.12 om gauge line) (22)	1,961 (77.20)		-
(revolvii 1,594	ng center) 2,094	22/15	- HSK 4990 (3.54) (w/o adjac 400 (15.75) (fr 10 22/15 (30/20)	1,359.5 (53.52) -A63 0 ent tools: ø130 (5.12 om gauge line) (22)	1,961 (77.20)	-	30/20)
(revolvii 1,594	ng center) 2,094	22/15	HSK 4990 (3.54) (w/o adjace 400 (15.75) (fre 10 22/15 (30/20) (30/20) n/cont)	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12) om gauge line) (22) (30 min/cont)	1,961 (77.20)	22/15 (30/20)
(revolvii 1,594	ng center) 2,094 (82.44)	22/15 (30 mi	HSK 4 990 (3.54) (w/o adjac- 400 (15.75) (frr 10 22/15 (30/20) (30/20) n/cont) 25/19 (33/25	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12) om gauge line) (22) (30 min/cont)	1,961 (77.20)	22/15 ((20 mir	(30/20) h/cont)
(revolvii 1,594	ng center) 2,094	22/15 (30 mi	HSK 4 990 (3.54) (w/o adjac- 400 (15.75) (frr 10 22/15 (30/20) (30/20) n/cont) 25/19 (33/25	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12) om gauge line) (22) (30 min/cont)	1,961 (77.20) 2))	22/15 ((20 mir ,500), /5.2 (DBC 2,00	30/20) h/cont)
(revolvii 1,594	ng center) 2,094 (82.44) - X: 5.2, Z: 4.6 (X: 6.9,	22/15 (30 mi	HSK 4 990 (3.54) (w/o adjac- 400 (15.75) (frr 10 22/15 (30/20) (30/20) n/cont) 25/19 (33/25	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12) om gauge line) (22) (30 min/cont)	1,961 (77.20) 2)) 	22/15 (20 mir ,500), /5.2 (DBC 2,00 ,500), /6.9 (DBC 2,00	30/20) h/cont)
(revolvii 1,594	ng center) 2,094 (82.44) - X: 5.2, Z: 4.6 (X: 6.9, 5.2 (6.9) (D	22/15 (30 mi , Z: 6.1) (DBC 1,500) BC 2,000),	HSK 4 990 (3.54) (w/o adjac- 400 (15.75) (frr 10 22/15 (30/20) (30/20) n/cont) 25/19 (33/25	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12) om gauge line) (22) (30 min/cont)	1,961 (77.20) 2)) A: 5.2, ZA: 4.6 (DBC 1 A: 6.9, ZA: 6.1 (DBC 1 XB: 3.5, ZB: 4.6	22/15 ((20 mir ,500), /5.2 (DBC 2,00 ,500), /6.9 (DBC 2,00 6, Y: 3.5, B: 3.0	30/20) h/cont)
(revolvii 1,594 (62.76)	x: 5.2, Z: 4.6 (X: 6.9) 5.2 (6.9) (D Y: 3.5 (4.7)	22/15 (30 mi , Z: 6.1) (DBC 1,500) BC 2,000), , B: 3.0 (4.0)	HSK 4 990 (3.54) (w/o adjac- 400 (15.75) (frr 10 22/15 (30/20) (30/20) n/cont) 25/19 (33/25	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12 om gauge line) (22) (30 min/cont)	1,961 (77.20) 2)) A: 5.2, ZA: 4.6 (DBC 1 A: 6.9, ZA: 6.1 (DBC 1 XB: 3.5, ZB: 4.6 (XB: 4.7, ZB: 6.7)	22/15 ((20 mir ,500), /5.2 (DBC 2,00 ,500), /6.9 (DBC 2,00 5, Y: 3.5, B: 3.0 1, Y: 4.7, B: 4.0)	30/20) n/cont)
(revolvii 1,594 (62.76)	ng center) 2,094 (82.44) - X: 5.2, Z: 4.6 (X: 6.9, 5.2 (6.9) (D	22/15 (30 mi , Z: 6.1) (DBC 1,500) BC 2,000), , B: 3.0 (4.0)	HSK 4 290 (3.54) (w/o adjaction 400 (15.75) (from 10 22/15 (30/20) (30/20) (30/20) (30/20) (25/19 (33/25) (6.1)	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12 om gauge line) (22) (30 min/cont) X, (X,	1,961 (77.20) 2)) A: 5.2, ZA: 4.6 (DBC 1 A: 6.9, ZA: 6.1 (DBC 1 XB: 3.5, ZB: 4.6 (XB: 4.7, ZB: 6.1	22/15 ((20 mir ,500), /5.2 (DBC 2,00 ,500), /6.9 (DBC 2,00 6, Y: 3.5, B: 3.0	30/20) n/cont)
(revolvii 1,594 (62.76)	x: 5.2, Z: 4.6 (X: 6.9) 5.2 (6.9) (D Y: 3.5 (4.7)	22/15 (30 mi , Z: 6.1) (DBC 1,500) BC 2,000), , B: 3.0 (4.0)	HSK 4 990 (3.54) (w/o adjac- 400 (15.75) (frr 10 22/15 (30/20) (30/20) n/cont) 25/19 (33/25	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12 om gauge line) (22) (30 min/cont) X, (X,	1,961 (77.20) 2)) A: 5.2, ZA: 4.6 (DBC 1 A: 6.9, ZA: 6.1 (DBC 1 XB: 3.5, ZB: 4.6 (XB: 4.7, ZB: 6.1	22/15 ((20 mir ,500), /5.2 (DBC 2,00 ,500), /6.9 (DBC 2,00 5, Y: 3.5, B: 3.0 1, Y: 4.7, B: 4.0)	30/20) n/cont)
(revolvii 1,594 (62.76)	x: 5.2, Z: 4.6 (X: 6.9, 5.2 (6.9) (D Y: 3.5 (4.7), 0 (tailstock)	22/15 (30 mi , Z: 6.1) (DBC 1,500) BC 2,000), , B: 3.0 (4.0)	HSK 4 290 (3.54) (w/o adjaction 400 (15.75) (from 10 22/15 (30/20) (30/20) (30/20) (30/20) (25/19 (33/25) (6.1)	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12 om gauge line) (22) (30 min/cont) X, (X,	1,961 (77.20) 2)) A: 5.2, ZA: 4.6 (DBC 1 A: 6.9, ZA: 6.1 (DBC 1 XB: 3.5, ZB: 4.6 (XB: 4.7, ZB: 6.1	22/15 ((20 mir ,500), /5.2 (DBC 2,00 ,500), /6.9 (DBC 2,00 5, Y: 3.5, B: 3.0 1, Y: 4.7, B: 4.0)	30/20) n/cont)
(revolvii 1,594 (62.76)	- X: 5.2, Z: 4.6 (X: 6.9, 5.2 (6.9) (D Y: 3.5 (4.7), 1 (tailstock)	22/15 (30 mi , Z: 6.1) (DBC 1,500) BC 2,000), , B: 3.0 (4.0) 4.6 0.2	HSK 4 290 (3.54) (w/o adjaction 400 (15.75) (from 10 22/15 (30/20) (30/20) (30/20) (30/20) (25/19 (33/25) (6.1)	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12 om gauge line) (22) (30 min/cont) X, (X,	1,961 (77.20) A: 5.2, ZA: 4.6 (DBC 1 A: 6.9, ZA: 6.1 (DBC 1 XB: 3.5, ZB: 4.6 (XB: 4.7, ZB: 6.1 (tailstock)	22/15 ((20 mir ,500), /5.2 (DBC 2,00 ,500), /6.9 (DBC 2,00 6, Y: 3.5, B: 3.0 1, Y: 4.7, B: 4.0) 4.6 (30/20) n/cont)
(revolvii 1,594 (62.76)	- X: 5.2, Z: 4.6 (X: 6.9, 5.2 (6.9) (D Y: 3.5 (4.7), 1 (tailstock)	22/15 (30 mi , Z: 6.1) (DBC 1,500) BBC 2,000), , B: 3.0 (4.0) 4.6 0.2 (116.34) 5,425 × 2,995	HSK 4 290 (3.54) (w/o adjaction 400 (15.75) (from 10 22/15 (30/20) (30/20) (30/20) (30/20) (25/19 (33/25) (6.1)	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12 om gauge line) (22) (30 min/cont) X, (X,	1,961 (77.20) A: 5.2, ZA: 4.6 (DBC 1 A: 6.9, ZA: 6.1 (DBC 1 XB: 3.5, ZB: 4.6 (XB: 4.7, ZB: 6.1 (tailstock) D)×3 3,030 (1 DBC 1,500: 5	22/15 ((20 mir ,500), /5.2 (DBC 2,00 ,500), /6.9 (DBC 2,00 6, Y: 3.5, B: 3.0 1, Y: 4.7, B: 4.0) 4.6 (119.29) 6,425 × 3,082	30/20) n/cont)
(revolvii 1,594 (62.76)	- X: 5.2, Z: 4.6 (X: 6.9) (D Y: 3.5 (4.7), (tailstock) 2,955 (DBC 1,500: (213.58)	22/15 (30 mi , Z: 6.1) (DBC 1,500) (BBC 2,000), , B: 3.0 (4.0) 4.6 0.2 (116.34) 5,425 × 2,995 × 117.91)	HSK 4 290 (3.54) (w/o adjaction 400 (15.75) (from 10 22/15 (30/20) (30/20) (30/20) (30/20) (25/19 (33/25) (6.1)	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12 om gauge line) (22) (30 min/cont) X, (X,	1,961 (77.20) A: 5.2, ZA: 4.6 (DBC 1 A: 6.9, ZA: 6.1 (DBC 1 XB: 3.5, ZB: 4.6 (XB: 4.7, ZB: 6. (tailstock) 0)×3 3,030 (** DBC 1,500: 5 (213.58 >**	22/15 (20 mir ,500), /5.2 (DBC 2,00 ,500), /6.9 (DBC 2,00 6, Y: 3.5, B: 3.0 1, Y: 4.7, B: 4.0) 4.6 (119.29) 6,425 × 3,082 5 (121.34)	30/20) n/cont)
(revolvii 1,594 (62.76)	- X: 5.2, Z: 4.6 (X: 6.9, 5.2 (6.9) (D Y: 3.5 (4.7), (tailstock) 2,955 (DBC 1,500: (213.58 DBC 2,000: (213.58))	22/15 (30 mi , Z: 6.1) (DBC 1,500) (BC 2,000), , B: 3.0 (4.0) 4.6 0.2 (116.34) 5,425 × 2,995 × 117.91) 6,175 × 2,995	HSK 4 290 (3.54) (w/o adjaction 400 (15.75) (from 10 22/15 (30/20) (30/20) (30/20) (30/20) (25/19 (33/25) (6.1)	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12 om gauge line) (22) (30 min/cont) X, (X,	1,961 (77.20) A: 5.2, ZA: 4.6 (DBC 1 A: 6.9, ZA: 6.1 (DBC 1 XB: 3.5, ZB: 4.6 (XB: 4.7, ZB: 6.) (tailstock) 0)×3 3,030 (** DBC 1,500: 5 (213.58 ×* DBC 2,000: 6	22/15 (20 mir ,500), /5.2 (DBC 2,00 ,500), /6.9 (DBC 2,00 6, Y: 3.5, B: 3.0 1, Y: 4.7, B: 4.0) 4.6 (119.29) ,425 × 3,082 (121.34) (175 × 3,082	30/20) n/cont)
(revolvii 1,594 (62.76)	- X: 5.2, Z: 4.6 (X: 6.9, 5.2 (6.9) (D Y: 3.5 (4.7), 1 (tailstock) 2,955 (DBC 1,500: 4213.58 DBC 2,000: (243.11)	22/15 (30 mi , Z: 6.1) (DBC 1,500) BBC 2,000), , B: 3.0 (4.0) 4.6 0.2 (116.34) 5,425 × 2,995 × 117.91) 6,175 × 2,995 × 117.91)	HSK 4 290 (3.54) (w/o adjaction 400 (15.75) (from 10 22/15 (30/20) (30/20) (30/20) (30/20) (25/19 (33/25) (6.1)	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12 om gauge line) (22) (30 min/cont) X, (X,	1,961 (77.20) A: 5.2, ZA: 4.6 (DBC 1 A: 6.9, ZA: 6.1 (DBC 1 XB: 3.5, ZB: 4.6 (XB: 4.7, ZB: 6.1) (tailstock) DBC 1,500: 5 (213.58 > DBC 2,000: 6 (243.11 >	22/15 ((20 mir ,500), /5.2 (DBC 2,00 ,500), /6.9 (DBC 2,00 6, Y: 3.5, B: 3.0 1, Y: 4.7, B: 4.0) 4.6 (119.29) 1,425 × 3,082 121.34) 1,75 × 3,082 121.34) 1,75 × 3,082	30/20) n/cont)
(revolvii 1,594 (62.76)	- X: 5.2, Z: 4.6 (X: 6.9, 5.2 (6.9) (D Y: 3.5 (4.7), 1 (tailstock) 2,955 (DBC 1,500: 4213.58 DBC 2,000: (243.11)	22/15 (30 mi , Z: 6.1) (DBC 1,500) (BC 2,000), , B: 3.0 (4.0) 4.6 0.2 (116.34) 5,425 × 2,995 × 117.91) 6,175 × 2,995	HSK 4 290 (3.54) (w/o adjaction 400 (15.75) (from 10 22/15 (30/20) (30/20) (30/20) (30/20) (25/19 (33/25) (6.1)	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12 om gauge line) (22) (30 min/cont) X, (X,	1,961 (77.20) A: 5.2, ZA: 4.6 (DBC 1 A: 6.9, ZA: 6.1 (DBC 1 XB: 3.5, ZB: 4.6 (XB: 4.7, ZB: 6.) (tailstock) 0)×3 3,030 (** DBC 1,500: 5 (213.58 ×* DBC 2,000: 6	22/15 ((20 mir ,500), /5.2 (DBC 2,00 ,500), /6.9 (DBC 2,00 6, Y: 3.5, B: 3.0 1, Y: 4.7, B: 4.0) 4.6 (119.29) 1,425 × 3,082 121.34) 1,75 × 3,082 121.34) 1,75 × 3,082	30/20) n/cont)
(revolvii 1,594 (62.76)	- X: 5.2, Z: 4.6 (X: 6.9, 5.2 (6.9) (D Y: 3.5 (4.7), 1 (tailstock) - 2,955 (213.58 DBC 2,000: 4243.11 DBC 1,500: 1	22/15 (30 mi , Z: 6.1) (DBC 1,500) BBC 2,000), , B: 3.0 (4.0) 4.6 0.2 (116.34) 5,425 × 2,995 × 117.91) 6,175 × 2,995 × 117.91)	HSK 4 290 (3.54) (w/o adjaction 400 (15.75) (from 10 22/15 (30/20) (30/20) (30/20) (30/20) (25/19 (33/25) (6.1)	1,359.5 (53.52) -A63 0 ent tools: Ø130 (5.12 om gauge line) (22) (30 min/cont) X, (X,	1,961 (77.20) A: 5.2, ZA: 4.6 (DBC 1 A: 6.9, ZA: 6.1 (DBC 1 XB: 3.5, ZB: 4.6 (XB: 4.7, ZB: 6.1) (tailstock) DBC 1,500: 5 (213.58 > DBC 2,000: 6 (243.11 >	22/15 ((20 mir ,500), /5.2 (DBC 2,00 ,500), /6.9 (DBC 2,00 6, Y: 3.5, B: 3.0 1, Y: 4.7, B: 4.0) 4.6 (119.29) 6,425 × 3,082 (121.34) 6,175 × 3,082 (121.34) 8,000 (39,600)	30/20) n/cont)

| 16

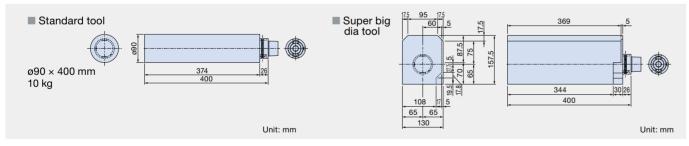
^{*1:} ø320 (swing over lower turret) during shaft work and when machining with opposing spindles.
*2: In the main Big-Bore spindle, it will be 1,500.
*3: In the main Big-Bore spindle, it will be 2,000.
*: The opposing spindle capacity and working range near the opposing spindle differ with 1SW and 2SW specifications.

Machine Specifications

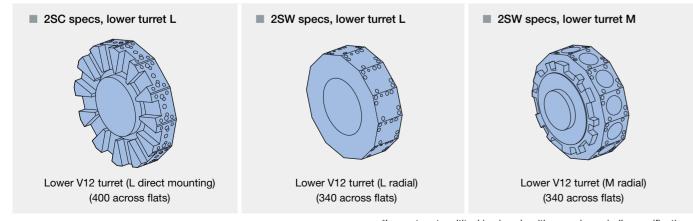
							US U5000				
Item			15	SC .	18	W	25	SC SC	25	SW	
			1500	2000	1500	2000	1500	2000	1500	2000	
Capacity	Swing over saddle	mm (in)		ø650 (25.59)		Upper: o	o650 (25.59),	Lower: ø320	0 (12.60)	
	Distance between center	rs mm (in)	1,500	2,000	1,500	2,000	1,500	2,000	1,500	2,000	
			(59.06)	(78.74)	(59.06)	(78.74)	(59.06)	(78.74)	(59.06)	(78.74)	
	Max machining dia	mm (in)		ø650 (25.59)	` '	Upper: ø	650 (25.59)*1	, Lower: ø32	20 (12.60)	
	Max machining length	mm (in)	1,500	2,000	1,500	2,000	1,500	2,000	1,500	2,000	
		`	(59.06)	(78.74)	(59.06)	(78.74)	(59.06)	(78.74)	(59.06)	(78.74)	
Travels	X axis	mm (in)	, ,	695 (2	27.36)	,	Upper	: 695 (27.36)	, Lower: 235	(9.25)	
	Z axis	upper: mm (in)	1,600	2,100	1,600	2,100	1,600	2,100	1,600	2,100	
			(62.99)	(82.68)	(62.99)	(82.68)	(62.99)	(82.68)	(62.99)	(82.68)	
	-	lower: mm (in)	(02.00) (02.00)			1,461	1,961	1,524	2,024		
		`		-	-		(57.52)	(77.20)	(60.00)	(79.69)	
	Y axis	mm (in)				300 (11.81)	(±150 (5.91))	ì			
	W axis	mm (in)			1,554	2,054			1,500	2,000	
		` ′	-	-	(61.18)	(80.87)	-	-	(59.06)	(78.74)	
	B-axis / indexing angle	degree			-30 to -	-210 (min co	ntrolled angle	e 0.001)		,	
	C-axis / indexing angle	degree			360	(min controll	ed angle 0.0	001)			
Spindle	Speed	min ⁻¹					3,000	,			
	Speed ranges				2 auto ran		d motor coil :	switchina)			
	Nose shape					JIS A		3/			
	Taper bore	mm (in)				ø112					
	Bearing dia	mm (in)				ø160	,				
Opposing	Speed	min ⁻¹			30 to		-	-	38 to	3,800	
spindle*	Speed ranges				2 auto	,				ranges	
	. , ,		-		(2-spee		-	-		ed motor	
					coil swi	tching)			coil sw	ritching)	
	Nose shape		_	-	JIS A	2-11	-	-	JIS	A2-8	
	Taper bore	mm (in)	_	-	ø112	(4.41)	-	-	ø80	(3.15)	
	Bearing dia	mm (in)	_	-	ø160	,	-	-		(4.72)	
urret	Туре	· /		Н	11	. ,	H1, L0			,	
cool spindle)	No. of tools			L/I			ı		: 1, Lower: 12	2	
	Tool shank dimensions	mm (in)					(1 × 1)				
	ID tool shank diameter	mm (in)					(1-1/2)				
	Milling tool spindle	min-1				Upper: 50					
	Milling tool spindle speed			ι	Jpper: 2 auto			coil switching	a)		
Feed rates	X, Z, Y axes		X: 50 7: 50		X: 50, Z: 50,					X: 50 7: 40	
			Y: 40	Y: 40	Y: 40	Y: 40	Y: 40	Y: 40	Y: 40	Y: 40	
	_	lower: m/min		-	-		X: 25, Z: 40	X: 25, Z: 30	X: 25, Z: 40	X: 25, Z: 3	
	W-axis	m/min	3	8		00	8	3	00	00	
			(tails:	tock)	30 20		(tailstock)		30	20	
	C, B axes	min ⁻¹				C: 200	, B: 30				
Tailstock	Tapered bore		MT N				MT N	No. 5			
			(Buil	t-in)	-		(Built-in)		_		
	Travel	mm (in)	1,554	2,054			1,359.5	1,961			
			(61.18)	(80.87)		-	(53.52)	(77.20)		-	
ATC	Tool shank		HSK-A63								
						HSK	7100				
	No. of tools	tools				HSK 4					
	No. of tools Max tool dia	mm (in)			•	4) (w/o adjac	0 ent tools: ø10				
	Max tool dia Max tool length				•	4) (w/o adjac	0				
	Max tool dia Max tool length Max tool mass	mm (in) mm (in) kg (lb)			40	4) (w/o adjace 00 (15.75) (fro 10	0 ent tools: ø10 om gauge lin (22)	e)			
Motor	Max tool dia Max tool length Max tool mass Main spindle motor	mm (in) mm (in) kg (lb) kW (hp)			3	4) (w/o adjace 00 (15.75) (fro 10 7/30 (49/40)	0 ent tools: ø10 om gauge lin	e)			
Motor	Max tool dia Max tool length Max tool mass	mm (in) mm (in) kg (lb)			32/22 (4) (w/o adjac 00 (15.75) (fro 10 7/30 (49/40) (42/30)	0 ent tools: ø10 om gauge lin (22)	e)		(30/20/15)	
Motor	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor	mm (in) mm (in) kg (lb) kW (hp) kW (hp)	-	-	32/22 ((20 mir	42) (w/o adjaco 00 (15.75) (fro 10 7/30 (49/40) (42/30) h/cont)	0 ent tools: ø13 om gauge lin (22) (30 min/cont	e) t) -		(30/20/15) n/cont)	
Motor	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor Milling tool spindle motor	mm (in) mm (in) kg (lb) kW (hp) kW (hp)	-	-	32/22 (20 mir	42) (w/o adjace 00 (15.75) (fro 10 7/30 (49/40) (42/30) 10/cont) 25/19 (33/25	0 ent tools: ø13 om gauge lin (22) (30 min/cont	e) t) -	(20 mi	n/cont)	
Motor	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor	mm (in) mm (in) kg (lb) kW (hp) kW (hp)	- X: 5.2, Z:	- 4.6 (DBC 1,	32/22 ((20 mir	42) (w/o adjace 00 (15.75) (fro 10 7/30 (49/40) (42/30) 10/cont) 25/19 (33/25	0 ent tools: ø1; om gauge lin (22) (30 min/cont) - (3 min/cont) XA: 5.2, ZA	e) t) - - A: 4.6 (DBC 1	(20 mi	DBC 2,000)	
Motor	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor Milling tool spindle motor	mm (in) mm (in) kg (lb) kW (hp) kW (hp)			32/22 (20 mir	4) (w/o adjace 00 (15.75) (fro 10 7/30 (49/40) 42/30) h/cont) 25/19 (33/25 C 2,000)	0 ent tools: ø1; om gauge lin (22) (30 min/cont) - (3 min/cont) XA: 5.2, ZA	e) t) - - A: 4.6 (DBC 1	(20 mi	DBC 2,000)	
Motor	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor Milling tool spindle motor	mm (in) mm (in) kg (lb) kW (hp) kW (hp)		6.1 (DBC 1, Y: 3.5,	3 32/22 (20 mir (20 mir (500) /5.2 (DB 500) /6.9 (DB B: 3.0	4) (w/o adjace 00 (15.75) (fro 10 7/30 (49/40) 42/30) h/cont) 25/19 (33/25 C 2,000)	0 ent tools: ø1: om gauge lin (22) (30 min/cont XA: 5.2, Z/ (XA: 6.9, Z/ XE	e) 	(20 mi 1,500), /5.2 (I 1,500), /6.9 (I 6, Y: 3.5, B: 3	DBC 2,000) DBC 2,000) DBC 2,000)	
Motor	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor Milling tool spindle motor X-, Z-, Y-, B-axis motors	mm (in) mm (in) kg (lb) kW (hp) kW (hp) kW (hp)		6.1 (DBC 1, Y: 3.5,	332/22 (20 mir (20 mir 500) /5.2 (DB 500) /6.9 (DB B: 3.0 B: 4.0)	4 b) (w/o adjace 00 (15.75) (fm 10 7/30 (49/40) 42/30) v/cont) 25/19 (33/25 C 2,000) C 2,000))	0 ent tools: ø1: om gauge lin (22) (30 min/cont XA: 5.2, Z/ (XA: 6.9, Z/ XE	e) 	(20 mi 1,500), /5.2 (I 1,500), /6.9 (I	DBC 2,000) DBC 2,000) DBC 2,000)	
Motor	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor Milling tool spindle motor X-, Z-, Y-, B-axis motors W-axis motor	mm (in) mm (in) kg (lb) kW (hp) kW (hp) kW (hp) kW (hp)		6.1 (DBC 1, Y: 3.5, (Y: 4.7,	32/22 (20 mir (20 mir 500) /5.2 (DB 500) /6.9 (DB B: 3.0 B: 4.0)	4 2) (w/o adjace 00 (15.75) (fm 10 7/30 (49/40) 42/30) 1/cont) 25/19 (33/25 C 2,000) C 2,000))	0 ent tools: ø1: om gauge lin (22) (30 min/cont) XA: 5.2, Z/F (XA: 6.9, Z/F (XE: 8.8) (XE: 2.8 (3.7) (e) A: 4.6 (DBC 1 A: 6.1 (DBC 1 3: 3.5, ZB: 4.8 3: 4.7, ZB: 6. tailstock)	(20 mi 1,500), /5.2 (I 1,500), /6.9 (I 6, Y: 3.5, B: 3 1, Y: 4.7, B: 4 4.6	DBC 2,000) DBC 2,000) 3.0	
Motor	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor Milling tool spindle motor X-, Z-, Y-, B-axis motors	mm (in) mm (in) kg (lb) kW (hp) kW (hp) kW (hp) kW (hp)	(X: 6.9, Z:	6.1 (DBC 1, Y: 3.5, (Y: 4.7,	32/22 (20 mir (20 mir 500) /5.2 (DB 500) /6.9 (DB B: 3.0 B: 4.0)	4 2) (w/o adjace 00 (15.75) (fm 10 7/30 (49/40) 42/30) 1/cont) 25/19 (33/25 C 2,000) C 2,000))	0 ent tools: ø1: om gauge lin (22) (30 min/cont -) (3 min/cont XA: 5.2, Z/ (XA: 6.9, Z/ (XE	e) A: 4.6 (DBC 1 A: 6.1 (DBC 1 3: 3.5, ZB: 4.8 3: 4.7, ZB: 6. tailstock)	(20 mi 1,500), /5.2 (I 1,500), /6.9 (I 6, Y: 3.5, B: 3 1, Y: 4.7, B: 4 4.6	DBC 2,000) DBC 2,000) DBC 2,000) 3.0 4.0)	
Motor	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor Milling tool spindle motor X-, Z-, Y-, B-axis motors W-axis motor	mm (in) mm (in) kg (lb) kW (hp) kW (hp) kW (hp) kW (hp)	(X: 6.9, Z:	6.1 (DBC 1, Y: 3.5, (Y: 4.7, tailstock)	32/22 (20 mir (20 mir 500) /5.2 (DB 500) /6.9 (DB B: 3.0 B: 4.0)	4 2) (w/o adjace 00 (15.75) (fm 10 7/30 (49/40) 42/30) 1/cont) 25/19 (33/25 C 2,000) C 2,000))	0 ent tools: ø1: om gauge lin (22) (30 min/cont) XA: 5.2, Z/F (XA: 6.9, Z/F (XE: 8.8) (XE: 2.8 (3.7) (e) A: 4.6 (DBC 1 A: 6.1 (DBC 1 B: 3.5, ZB: 4.6 B: 4.7, ZB: 6. tailstock) 0.73/1.0) ×3	(20 mi 1,500), /5.2 (I 1,500), /6.9 (I 6, Y: 3.5, B: 3 1, Y: 4.7, B: 4 4.6	DBC 2,000) DBC 2,000) DBC 2,000) 3.0 4.0)	
	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor Milling tool spindle motor X-, Z-, Y-, B-axis motors W-axis motor Coolant motor (50Hz/60Hz/60Hz/60Hz/60Hz/60Hz/60Hz/60Hz/6	mm (in) mm (in) kg (lb) kW (hp) kW (hp) r kW (hp) kW (hp) kW (hp)	(X: 6.9, Z: 2.8 (3.7) (6.1 (DBC 1, Y: 3.5, (Y: 4.7, tailstock)	32/22 (20 mir (20 mir 500) /5.2 (DB 5500) /6.9 (DB B: 3.0 B: 4.0) 4.6 (0.25/0.25 (0	4 c) (w/o adjace 00 (15.75) (fm 10 7/30 (49/40) 42/30) a/cont) 25/19 (33/25 C 2,000) C 2,000) 6.1) .33/0.33) × 1	0 ent tools: ø1: om gauge lin (22) (30 min/cont	e) A: 4.6 (DBC 1 A: 6.1 (DBC 1 S: 3.5, ZB: 4.6 S: 4.7, ZB: 6. tailstock) 0.73/1.0) ×3 3,030 ((20 mi 1,500), /5.2 (I 1,500), /6.9 (I 6, Y: 3.5, B: 3 1, Y: 4.7, B: 4 4.6	DBC 2,000) DBC 2,000) 3.0 4.0) (6.1)	
Machine	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor Milling tool spindle motor X-, Z-, Y-, B-axis motors W-axis motor Coolant motor (50Hz/60Height	mm (in) mm (in) kg (lb) kW (hp) kW (hp) r kW (hp) kW (hp) kW (hp) kW (hp) mm (in)	(X: 6.9, Z: 2.8 (3.7) (6.1 (DBC 1, Y: 3.5, (Y: 4.7, tailstock) 2,955 (32/22 (20 mir (20 mir 5000) /5.2 (DB 5000) /6.9 (DB B: 3.0 4.6 (0.25/0.25 (0.	4 c) (w/o adjace 00 (15.75) (fm 10 7/30 (49/40) 42/30) a/cont) 25/19 (33/25 C 2,000) C 2,000) 6.1) .33/0.33) × 1	0 ent tools: ø1: om gauge lin (22) (30 min/cont	e) A: 4.6 (DBC 1 A: 6.1 (DBC 1 B: 3.5, ZB: 4.1 B: 4.7, ZB: 6.1 tailstock) 0.73/1.0) ×3 3,030 (DBC 1,500: 8	(20 mi 1,500), /5.2 (I 1,500), /6.9 (I 6, Y: 3.5, B: 3 1, Y: 4.7, B: 4 4.6	DBC 2,000) DBC 2,000) 3.0 4.0) (6.1)	
Machine	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor Milling tool spindle motor X-, Z-, Y-, B-axis motors W-axis motor Coolant motor (50Hz/60Height Floor space	mm (in) mm (in) kg (lb) kW (hp) kW (hp) r kW (hp) kW (hp) kW (hp) kW (hp) mm (in)	(X: 6.9, Z:	6.1 (DBC 1, Y: 3.5, (Y: 4.7, tailstock) 2,955 (DBC 1,500: § (217.72)	332/22 (20 mir (20 mir 5000) /5.2 (DB 5000) /6.9 (DB B: 3.0 4.6 (0.25/0.25 (0 116.34) 5,530 × 2,995	4 b) (w/o adjace 00 (15.75) (fro 10. 7/30 (49/40) 42/30) v/cont) 25/19 (33/25 C 2,000) C 2,000)) 6.1) .33/0.33) x 1	0 ent tools: ø1: om gauge lin (22) (30 min/cont XA: 5.2, ZA (XA: 6.9, ZA XE 2.8 (3.7) (, 0.55/0.75 ()	e) A: 4.6 (DBC 1 A: 6.1 (DBC 1 B: 3.5, ZB: 4.1 tailstock) D:73/1.0) ×3 3,030 (DBC 1,500: 5 (217.72 >	(20 mi 1,500), /5.2 (I 1,500), /6.9 (I 6, Y: 3.5, B: 3 1, Y: 4.7, B: 4 4.6 119.29) 5,530 × 3,082	n/cont) DBC 2,000) DBC 2,000) 3.0 4.0) (6.1)	
Machine	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor Milling tool spindle motor X-, Z-, Y-, B-axis motors W-axis motor Coolant motor (50Hz/60Height Floor space	mm (in) mm (in) kg (lb) kW (hp) kW (hp) r kW (hp) kW (hp) kW (hp) kW (hp) mm (in)	(X: 6.9, Z:	6.1 (DBC 1, Y: 3.5, (Y: 4.7, tailstock) 2,955 (DBC 1,500: § (217.72 s) DBC 2,000: §	33/222 (20 mir 20 mir 5000) /5.2 (DB 5000) /6.9 (DB B: 3.0 B: 4.0) 4.6 (0.25/0.25 (0 116.34) 5,530 × 2,995 × 117.91)	4 b) (w/o adjace 00 (15.75) (fro 10. 7/30 (49/40) 42/30) v/cont) 25/19 (33/25 C 2,000) C 2,000)) 6.1) .33/0.33) x 1	0 ent tools: ø1: om gauge lin (22) (30 min/cont XA: 5.2, ZA (XA: 6.9, ZA XE 2.8 (3.7) (, 0.55/0.75 ()	e) A: 4.6 (DBC 1 A: 6.1 (DBC 1 B: 3.5, ZB: 4.1 B: 4.7, ZB: 6. tailstock) 0.73/1.0) ×3 3,030 (DBC 1,500: \$ (217.72 > DBC 2,000: 6	(20 mi 1,500), /5.2 (I 1,500), /6.9 (I 6, Y: 3.5, B: 3 1, Y: 4.7, B: 4 4.6 119.29) 5,530 × 3,082 × 121.34)	n/cont) DBC 2,000) DBC 2,000) 3.0 4.0) (6.1)	
Motor Machine size	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor Milling tool spindle motor X-, Z-, Y-, B-axis motors W-axis motor Coolant motor (50Hz/60Height Floor space	mm (in) mm (in) kg (lb) kW (hp) kW (hp) r kW (hp) kW (hp) kW (hp) kW (hp) mm (in)	(X: 6.9, Z:	6.1 (DBC 1, Y: 3.5, (Y: 4.7, tailstock) 2,955 (DBC 1,500: § (217.72) DBC 2,000: § (247.24)	33/22 (20 min (20 min 500) /5.2 (DB 500) /6.9 (DB B: 3.0 B: 4.0) 4.6 (0.25/0.25 (0 116.34) 5,530 × 2,995 × 117.91) 6,280 × 2,995	4 b) (w/o adjace 00 (15.75) (fm 10. 7/30 (49/40) 42/30) v/cont) 25/19 (33/25 C 2,000) C 2,000)) 6.1) .33/0.33) × 1	0 ent tools: ø1: om gauge lin (22) (30 min/cont XA: 5.2, Z/ (XA: 6.9, Z/ XE (XE 2.8 (3.7) (, 0.55/0.75 (a: 4.6 (DBC 1 a: 4.6 (DBC 1 a: 6.1 (DBC 1 a: 5.5, ZB: 4.1 a: 4.7, ZB: 6.1 tailstock) 0.73/1.0) ×3 3,030 (0DBC 1,500: 5 (217.72 > 0DBC 2,000: 6 (247.24 >	(20 mi 1,500), /5.2 (I 1,500), /6.9 (I 6, Y: 3.5, B: 3 1, Y: 4.7, B: 4 4.6 119.29) 5,530 × 3,083 × 121.34) 6,280 × 3,083	n/cont) DBC 2,000) DBC 2,000) 3.0 4.0) (6.1)	
Machine	Max tool dia Max tool length Max tool mass Main spindle motor Opposing spindle motor Milling tool spindle motor X-, Z-, Y-, B-axis motors W-axis motor Coolant motor (50Hz/60Height Floor space W x D (tank included)	mm (in) mm (in) kg (lb) kW (hp) kW (hp) r kW (hp) kW (hp) ht kW (hp) mm (in) mm × mm (in)	(X: 6.9, Z: 2.8 (3.7) (6.1 (DBC 1, Y: 3.5, (Y: 4.7, tailstock) 2,955 (DBC 1,500: 5 (217.72 : DBC 2,000: 6 (247.24 : BC 1,500: 1	32/22 (20 min	4 b) (w/o adjace 00 (15.75) (fm 10. 7/30 (49/40) 42/30) 1/cont) 25/19 (33/25 C 2,000) C 2,000)) 6.1) .33/0.33) × 1	0 ent tools: ø1: om gauge lin (22) (30 min/cont XA: 5.2, Z/ (XA: 6.9, Z/ XE 2.8 (3.7) (, 0.55/0.75 (e) A: 4.6 (DBC 1 A: 4.6 (DBC 1 A: 6.1 (DBC 1 B: 3.5, ZB: 4.1 B: 4.7, ZB: 6. tailstock) 0.73/1.0) ×3 3.030 (0.1500: 5 (247.24 × BC 1,500: 1	(20 mi 1,500), /5.2 (I 1,500), /6.9 (I 6, Y: 3.5, B: 3 1, Y: 4.7, B: 4 4.6 119.29) 5,530 × 3,083 × 121.34) 6,280 × 3,083 × 121.34)	n/cont) DBC 2,000) DBC 2,000)) 3.0 4.0) (6.1)	


Optional Specifications

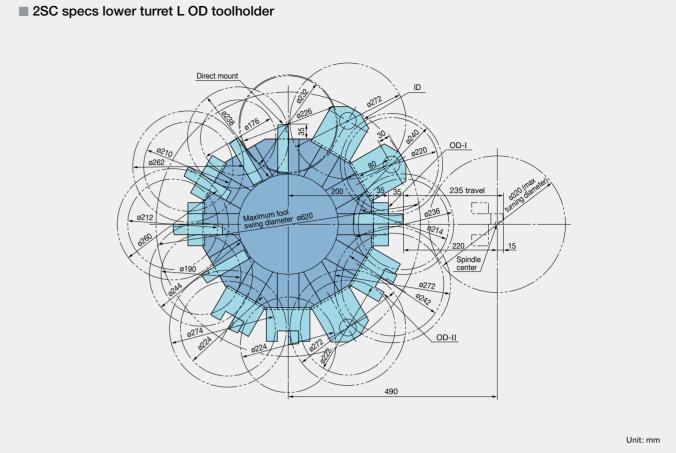
Optional Spec	cifications	
Big-Bore spindle	MULTUS U3000	4,200 min ⁻¹ A2-8 ø140 22/15 kW (30 min/cont)
	MULTUS U4000	3,000 min ⁻¹ A2-11 ø160 32/22 kW (20 min/cont)
Opposing spindle	MULTUS U3000	1S Big-Bore 4,200 min ⁻¹ A2-8 ø140 22/15 kW (30 min/cont)
	MULTUS U4000	1S Big-Bore 3,000 min ⁻¹ A2-11 ø160 32/22 kW (20 min/cont)
B-axis indexing		NC B-axis
Lower turret		V12 multitasking 6,000 min ⁻¹ PREX 5.5/3.7 kW (2 min/cont)
High pressure cool	lant	Upper turret, upper + lower turret
Tailstock		Hydraulic quill (self-propelled) (Standard with 2S)
Tailstock sleeve sy	stem	Built-in type MT No. 4
Tool shank profile		CAPTO C6
ATC tool magazine	capacity	80 tools, 120 tools, 180 tools (matrix)
Chip conveyor		Drum filter type, hinge type, scraper type
Conveyor-related of	pptions	Chip conveyor torque limiter (alarm C at detection), intermittent feed chip conveyor, machine linked chip conveyor
Chip buckets		L type, H type
Coolant sludge pre	evention	Oil skimmer mounted
High pressure cool		7 MPa
0 1	/low pressure switch	L/M thru high/low pressure switch, M peripheral low pressure; L/M thru high/low pressure switch; M peripheral high/low pressure switch
Lower turret coolar switch	nt high/low pressure	Proposed Grand Processes
Lubrication monito	r	B-2 (w/ warning lamp)
Cover-related option		Upper door auto open/close, front door auto open/close, auto open/close on both upper + front door
Front cover auto o devices		Safety tape switch
Dual palm start but	ttons (door close	
interlock)	(400. 0.000	
Front cover open/o	close inchina	
Chuck auto open/o		Chuck auto open/close confirm, chuck high/low pressure switch (re-gripping) (main, opposing), chucking
Oridon dato openio	51030 001111111	miss detection (main, opposing)
Tailstock-related o	ntions	Tailstock quill auto advance/retract confirmation, tailstock thrust high/low switch
Opposing spindle	•	Tailotook quin auto davanoo/rendot committation, tailotook undot ingriniow switch
Air blower (blast) o		Chuck air blower, tailstock air blower, spindle ID air blower (main, opposing) Turret air blower (L/M thru-spindle during rotation only, L/M thru-spindle during rotation/M periphery, M periphery only)
0	41	Lower turret air blower (internal piping, common coolant nozzle)
Coolant-related op	otions	Shower coolant (main/opposing: A, B), thru-spindle coolant (main/opposing: A, B), ceiling shower coolant (A, B)
Dust-proofing		Spindle air purge (main, opposing), guideway double wiper (X + Y + Z, X + Y + Z + Xb + Zb) Ball screw double wiper (X + Y + Z, X + Y + Z + Xb + Zb)
5-Axis Auto Tuning	System	Standard kit, High spec kit
NC Gage		Standard kit, High spec kit
In-process work ga	auging	Renishaw
Touch Setter		M (manual), A (auto)
Workrest		
Work stopper in sp		
Chuck internal sizi	ng stopper	Main, opposing
Additional coolant	pump	0.8 kW
Coolant tank		Thickener bags, line filter, backwashing filter
Coolant sensor		Level detection, flow sensor, Level + flow sensor
Coolant gun moun	ted	
Steadyrest		1S: Self-propelled (no relieving), 2S: lower turret, lower cross-slide
Mist collector		
High accuracy opt	ions	AbsoScale (Xa-axis, Xb-axis, Ya-axis, Za-axis), temperature regulator (coolant, hydraulic oil, spindle temperature)
Bar feeder		
Work sizing stoppe		Upper turret, lower turret
Parts catcher-relat	ed options	Main spindle side eject, opposing spindle side eject, Workpiece ejector (spring type, air type) Workpiece eject conveyor (finished parts right eject)
Workpiece unloade	er	
Gantry loader		OGL10-P, OGL30-P, OGL50-P
CNC		High class (B-axis contouring)
		<u> </u>


| 17 | 18

^{*1:} ø320 (swing over lower turret) during shaft work and when machining with opposing spindles.
*: The opposing spindle capacity and working range near the opposing spindle differ with 1SW and 2SW specifications.

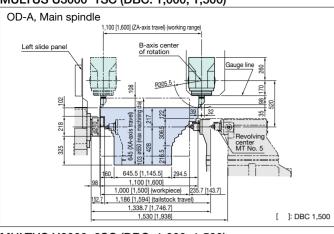

■ Upper Turret Tooling System (HSK-A63)

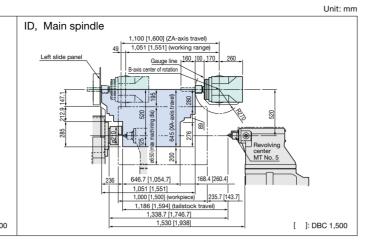
■ Max Tool Dimensions

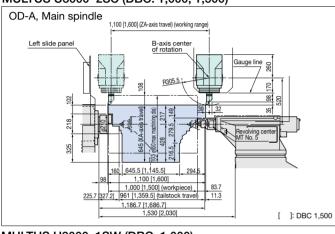


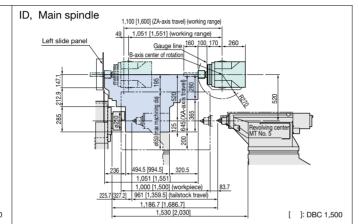
■ Lower turret for each specification

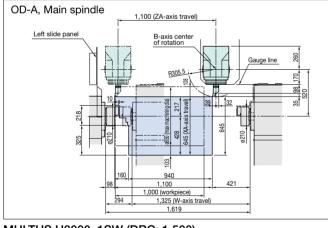
*Lower turret multitasking is only with opposing spindle specifications

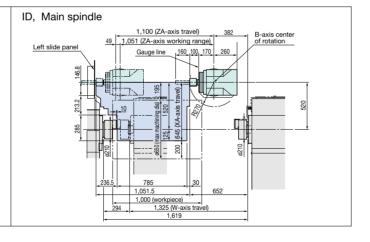

■ Lower turret tool interference drawing

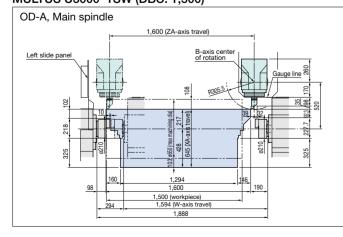


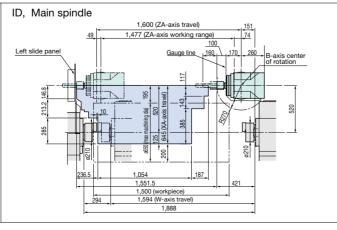

■ Working Range

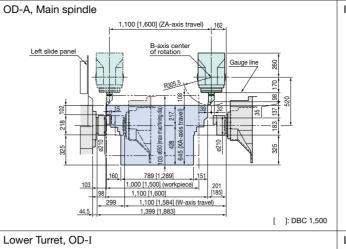

MULTUS U3000 1SC (DBC: 1,000, 1,500)

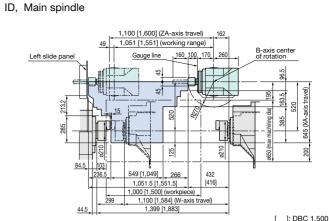


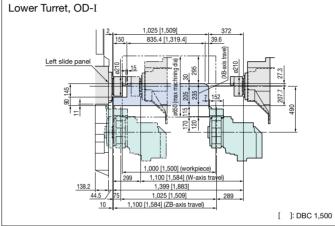

MULTUS U3000 2SC (DBC: 1,000, 1,500)

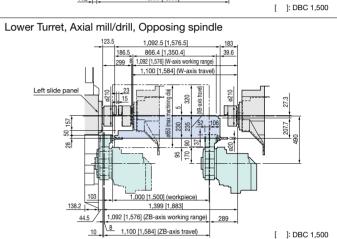


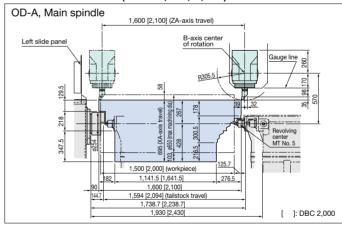

MULTUS U3000 1SW (DBC: 1,000)

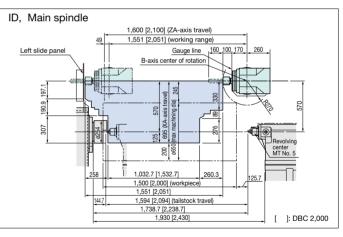


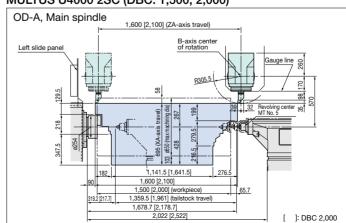

MULTUS U3000 1SW (DBC: 1,500)

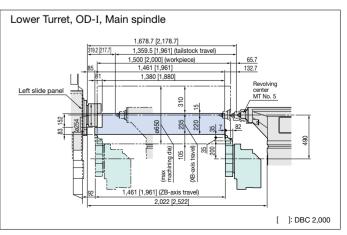


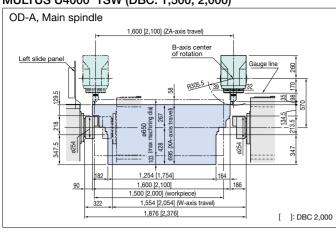

MULTUS U3000 2SW (DBC: 1,000, 1,500)

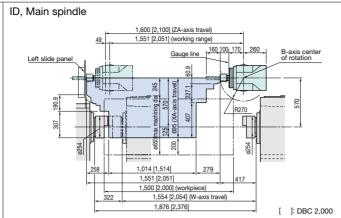



Unit: mm

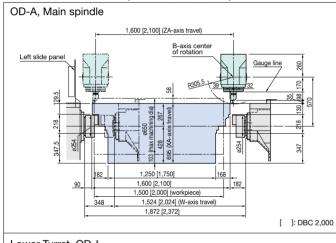


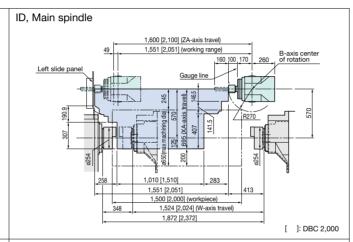

MULTUS U4000 1SC (DBC: 1,500, 2,000)

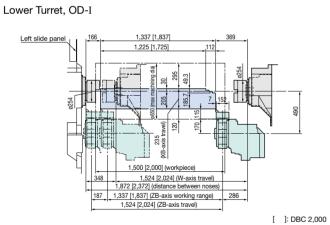

MULTUS U4000 2SC (DBC: 1,500, 2,000)

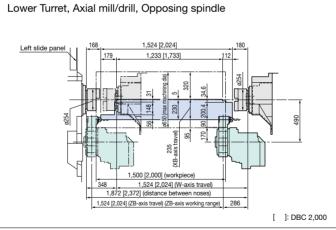


■ Working Range

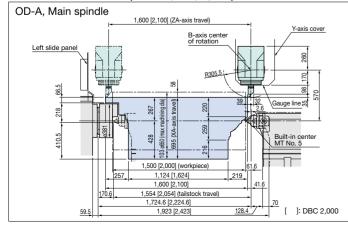

MULTUS U4000 1SW (DBC: 1,500, 2,000)

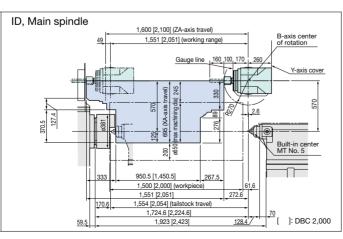


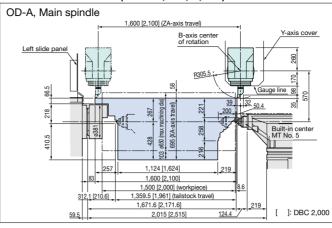


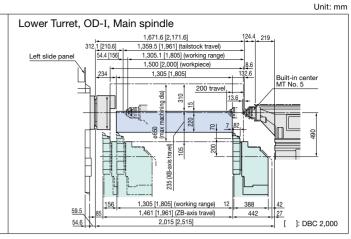

Unit: mm

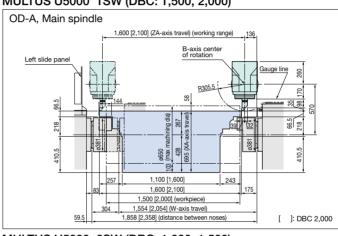
MULTUS U4000 2SW (DBC: 1,500, 2,000)

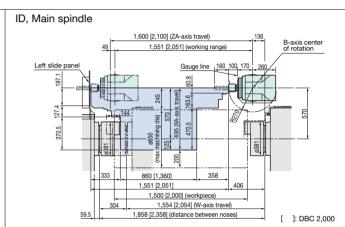


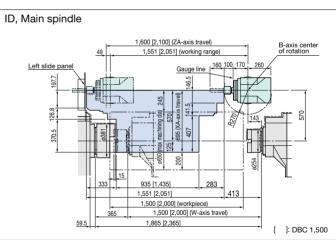


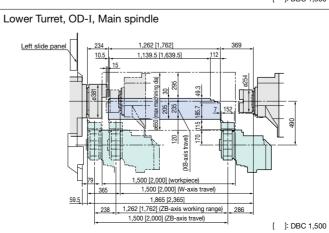


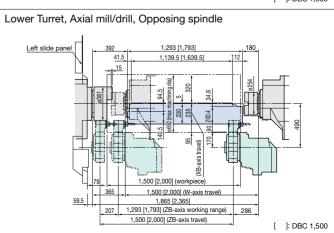

MULTUS U5000 1SC (DBC: 1,500, 2,000)



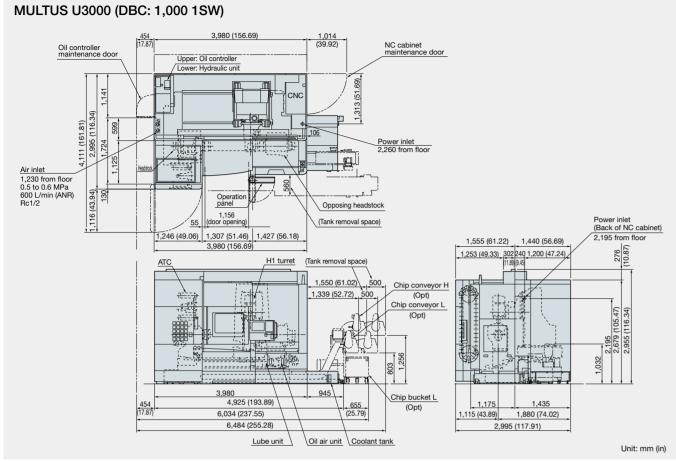

MULTUS U5000 2SC (DBC: 1,500, 2,000)

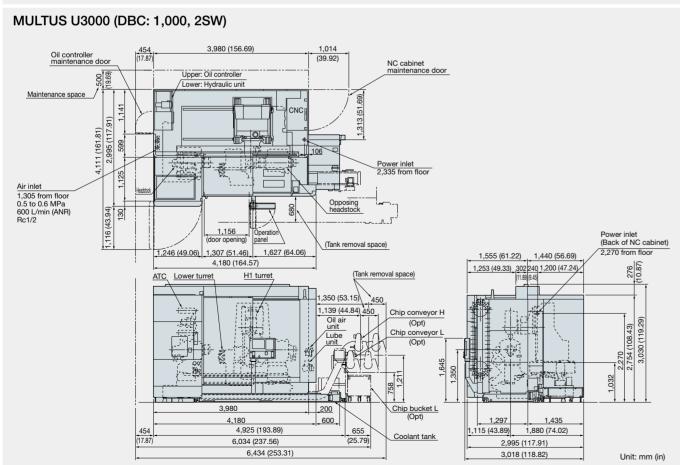

MULTUS U5000 1SW (DBC: 1,500, 2,000)

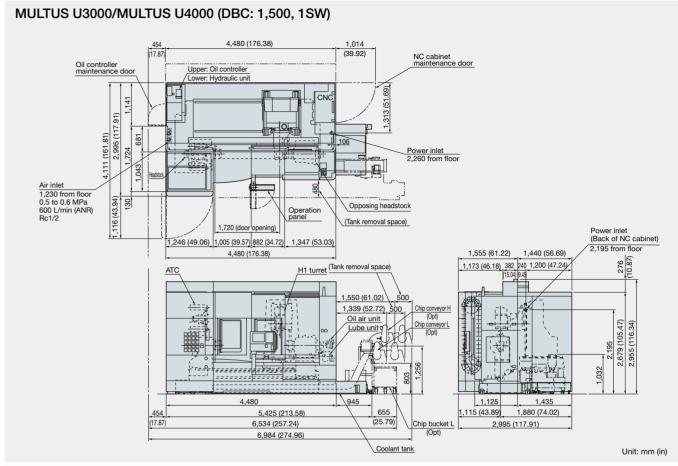


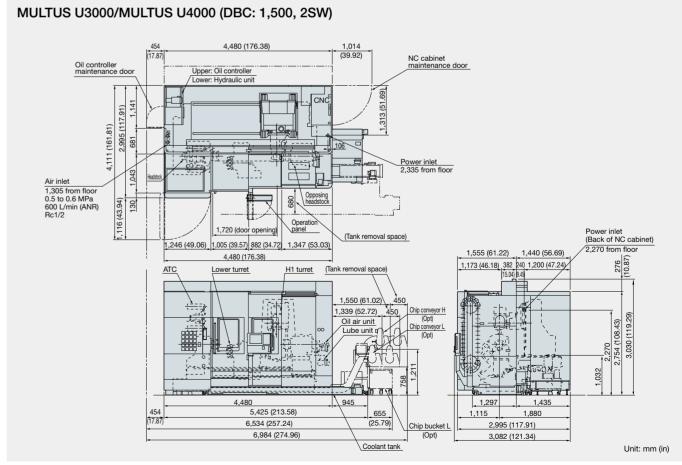


MULTUS U5000 2SW (DBC: 1,000, 1,500)

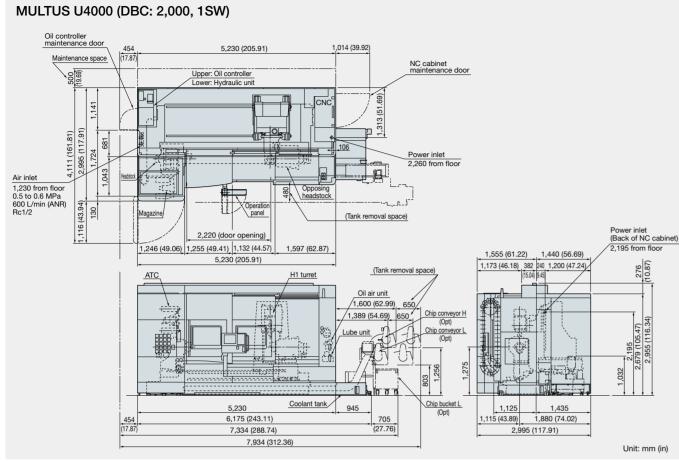


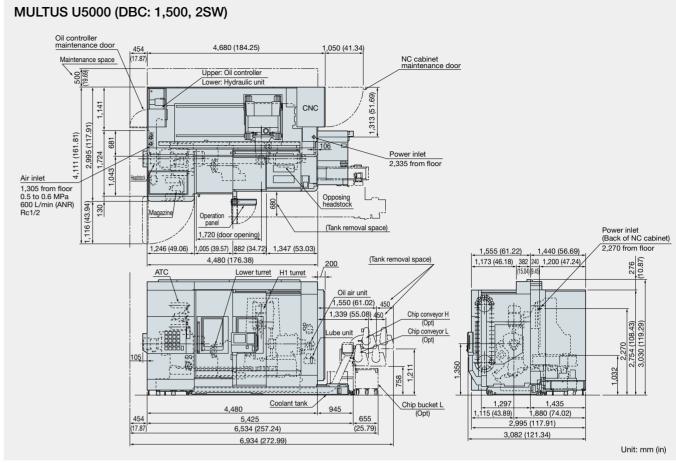


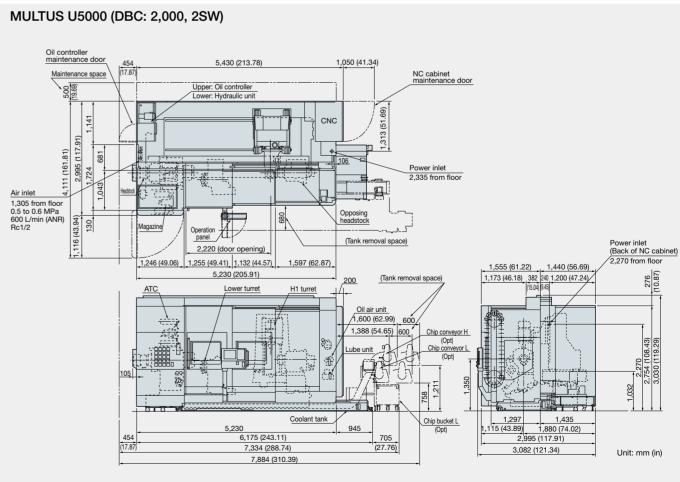




■ Dimensional and Installation Drawings







■ Dimensional and Installation Drawings

MULTUS U4000 (DBC: 2,000, 2SW) Oil controller maintenance door 5,230 (205.91) 1,014 (39.92) NC cabinet maintenance door Upper: Oil controller Lower: Hydraulic unit 2,335 from floor 1,305 from floor 0.5 to 0.6 MPa 600 L/min (ANR) Rc1/2 (Tank removal space) Power inlet (Back of NC cabinet) 2,220 (door opening) 1,246 (49.06) 1,255 (49.41) 1,132 (44.57) 1,597 (62.87) 2,270 from floor 1,555 (61.22) 1,440 (56.69) 5,230 (205.91) 1,173 (46.18) 382 240 1,200 (47.24) H1 turret Lower turret 1,600 (62.99) 600 1,389 (54.69) 600 Lube unit Coolant tank / Chip bucket L (Opt) 945 1,297 6,175 (243.11) 1,115 (43.89) 1,880 (74.02) 7.334 (288.74) 2,995 (117.91) Unit: mm (in) 7,884 (310.39) 3,082 (121.34)

OSP suite OSP-P300SA The Next-Generation Intelligent CNC

■ Standard Specifications

Basic Specs	Control	Turning: X, Z simultaneous 2-axis, Multitasking: X, Y, Z, B, C simultaneous 5-axis, Spindle control max 4 axes
		(2 spindles, 2 milling tool spindles)
	Position feedback	OSP full range absolute position feedback (zero point return not required)
	Min / Max command	±99999.999 mm, ±99999.999° 8-digit decimal, command unit: 0.001 mm, 0.01 mm, 1 mm, 0.001°, 0.01°, 1°
	Feed	Override: 0 to 200%
	Spindle control	Direct spindle speed commands override 50~200%, Milling tool override 30-200%, Constant cutting speed, optimum turning speed designate
	Tool commands	2-digit tool no. + 4-digit tool no. (max tool registration: 1000 sets)
	Tool compensation	Tool offset, nose R comp: 20 sets per tool, multi-coordinate tool compensation
	Display	15-inch color display operational panel, multi touch panel operations
	Self-diagnostics	Automatic diagnostics and display of program, operation, machine, and NC system problems
	Program capacity	Program storage: 4 GB, operation buffer: 2 MB
Operations	"suite apps"	Applications to graphically visualize and digitize information needed on the shop floor
	"suite operation"	Highly reliable touch panel suited to shop floors. One-touch access to suite apps.
	Easy Operation	"Single-mode operation" for a series of operations from a single screen. Easy-to-use operation panel supports complete machine control.
	Collision Avoidance System	Prevents interference during manual, automatic operation
		(there are limits in interference prevention unit, unit movement)
	Programming	Program management, edit, scheduled programs, fixed cycles, special fixed cycles, tool nose R compensation,
		slope machining, M-spindle synchronized tapping, fixed drilling cycles, arithmetic operations, logic operations, math functions,
		variables, branch statements, auto programming (LAP4), programming help
	Machine operations	MDI, manual (rapid traverse, pulse handle), load meter, operations help, alarm help, sequence return, manual interrupt & auto return, data I/O, easy setting of cycle time reduction
	MacMan	Machining Management: machining results, machine utilization, fault data compile & report, external output
	Com / Net	USB ports, Ethernet
High speed/	TAS-C	Thermo Active Stabilizer—Construction: corrects machine construction thermal deformation error during shop temperature change.
accuracy	TAS-S	Thermo Active Stabilizer—Spindle: corrects milling tool spindle thermal deformation error during spindle rotation.
	High speed/accuracy	Hi-G control
Energy-saving	ECO suite	ECO Idling Stop, ECO Power Monitor

19-inch operation panel with adjustable angle

Ergonomically-based, operator-friendly operation panel (Optional)

Large 19-inch monitor

Large, easy-to-use 19-inch monitor available. "Single-screen operation," which lets you see and do all you want on a single operation screen, has even greater visibility with larger monitor.

Adjustable-tilt keyboard

The keyboard angle can be adjusted for ease of use, and reduced work-related stress on the operator.

• Four tilt angle positions from 0° to 45°

OSP suite is even more convenient with large screen

Greater amounts of information on screen makes OSP suite even easier to use.

Ergonomic control panel (Optional*)

·19" display ·Adjustable-tilt keyboard *Standard in certain markets.

Optional Specifications

ntional	Kit spec	-	ML	-	D	AO	т
otional		E	D	E	D	E	L
teractive Progran	nming						
Advanced One-T	ouch IGF-L Multitasking (w/Real 3D)					•	1
ogramming							
Operation buffer	(10 MB)						L
Circular threadin	g		•		•		1
Program notes			•		•		L
User task 2 I/0	O variables, 8 each						L
Work coordinate	10 sets	•	•	•	•	•	
system select	50 sets						
	100 sets						L
1,000 common v	ariables (200 is standard)						
Thread matching	ı						
Threading slide h	nold (G34, G35)						
Variable Spindle	Speed Threading (VSST)						
Inverse time feed	i						Γ
Spindle synchror	nized tapping						T
Coordinate conv		•	•	•	•	•	
Profile generate		•	•	•	•	•	t
Flat turning							T
	llation (with NCYL commands)	•	•	•	•	•	t
-	ng, rotation, copying	•	•	•	•	•	t
Helical cutting							t
Slope machining							t
Profile helical cut							t
Hobbing	9						t
Multi-flute cutter	function		\vdash	\vdash			t
C-axis torque sk							t
	pordinate conversion		\vdash				t
onitoring	ordinate conversion						
Real 3-D simulat	ion						Г
Cycle time over		•	•	•	•	•	t
Load monitor (sp		-	-	•	•	•	H
	-load detection (load monitor ordered)			-	-	_	H
-	nostics (spindle, feed axes)						H
							H
Machine Status I							l
Tool life manager		-	•		•		╀
Tool life prior not							┝
Operation end b			_	_			\vdash
Work counters	Count only						H
	Cycle stop		_	_	_	_	1
	Start disabled		_	_	_		1
Hour meters	Power ON		_	_	_	<u> </u>	L
	Spindle rotation		_	_			H
	NC operating	-	_	_	_	_	ļ
	onitor (counter, totaling)	•	•	•	•	•	L
	(3-color C type) [A type, B type]	•	•	•	•	•	Ŀ
easuring -							
In-process work		Incl	udeo	l in m	nachi	ne sp	эе
	zero offset by touch sensor		_				L
	zero offset by touch sensor						L
C-axis automatic							L
Y-axis gauging		1					
	File output		1			1	L
Y-axis gauging	File output			L	L		
Y-axis gauging Gauge data	File output Quantitative compensation						
Y-axis gauging Gauge data output							
Y-axis gauging Gauge data output Post-process	Quantitative compensation						
Y-axis gauging Gauge data output Post-process work gauging	Quantitative compensation (five level, seven level)						

Note. NML: Normal, 3D: Real 3D simulation, AOT-M: Advanced One-Touch IGF-L Multitasking, E: Economy, D: Deluxe

	Kit spec	NN	ИL	3	D	AO	T-N
Optional	Tut opeo	Е	D	Е	D	Е	С
Energy saving ECO	suite						
ECO operation	Chip conveyor intermittent/linked operation						
	Mist collector intermittent/linked operation						
	Spindle power peak cutting						
External Input/Out	put and Communication Functions						
RS-232C conne							П
DNC links	DNC-T3						
	DNC-C / Ethernet						
	DNC-DT						
USB	2 additional ports possible						
							_
Automation / Unte							
Auto power shut				_			H
	on (by calendar timer)						
Tool retract cycle							
External	A (pushbutton), 8 types						
program selections	B (rotary switch), 8 stages						
Selections	C1 (digital switch), 2-digit BCD						
	C2 (external input), 4-digit BCD						
Okuma loader (0	OGL) interfaces	Inc	lude	d in l	oad	er sp	ec
	TYPE B (machine)					Ė	Γ
and loader	TYPE C (robot and loader)						t
interface *1	TYPE D						H
	TYPE E						H
			L		L.,		L
Bar feeders	Bar feeder	Incl	uded	in m	nachi	ne sp	e
	Interface only						L
Cycle time	Operation time reduction	•				•	
reduction*1				_		_	Ľ
High-Speed /High-	Accuracy Functions						
B axis NC contro	ol						
Simultaneous	Super-NURBS						
5-axis kit	Tool center point control II						Г
	Inverse time feed						T
	DNC-DT						H
	Tool posture command						H
	1001 posture command	l .				1	
	O disconsissed accordingto according			_			Н
	3-dimensional coordinate conversion						
	Herical cutting						
0.1 µm control *	Herical cutting Slope machining						
0.1 µm control *	Herical cutting Slope machining						
	Herical cutting Slope machining	•	•	•	•	•	
Pitch error comp	Herical cutting Slope machining	•	•	•	•	•	
Pitch error comp	Herical cutting Slope machining tensation	•	•	•	•	•	
Pitch error comp	Herical cutting Slope machining the pensation Linear axes Linear and rotational axes	•	•	•	•	•	
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto	Herical cutting Slope machining tensation Linear axes	•	•	•	•	•	•
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System	Herical cutting Slope machining Interpretation Linear axes Linear and rotational axes Standard, high spec	•	•	•	•	•	
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin	Herical cutting Slope machining I Densation Linear axes Linear and rotational axes Standard, high spec t control II	•	•	•	•	•	
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman	Herical cutting Slope machining I Densation Linear axes Linear and rotational axes Standard, high spec t control II	•	•	•	•	•	
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions	Herical cutting Slope machining Interpretation Linear axes Linear and rotational axes Standard, high spec It control II	•	•	•	•	•	
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman	Herical cutting Slope machining Interpretation Linear axes Linear and rotational axes Standard, high spec It control II	•	•	•	•	•	
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions	Herical cutting Slope machining Interpretation Linear axes Linear and rotational axes Standard, high spec It control II It descriptions Standard, high spec	•	•	•	•	•	
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions	Herical cutting Slope machining Interpretation Linear axes Linear and rotational axes Standard, high spec It control II Indicates the specific of the spe	•	•	•	•	•	
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions One-Touch Spre Gear machining Machining Navi	Herical cutting Slope machining Interpretation Linear axes Linear and rotational axes Standard, high spec It control II Indicates the specific of the spe	•	•	•	•	•	
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions One-Touch Spre Gear machining Machining Navi	Herical cutting Slope machining Interpretation Linear axes Linear and rotational axes Standard, high spec It control II It did Linear axes Linear axes Linear and rotational axes Standard, high spec	•	•	•	•	•	
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions One-Touch Spre Gear machining Machining Navi Machining Navi Harmonic Spind	Herical cutting Slope machining Interpretation Linear axes Linear and rotational axes Standard, high spec It control II Ind Ind Ind Ind Ind Ind Ind I						
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions One-Touch Spre Gear machining Machining Navi Machining Navi Harmonic Spind Spindle dead-ske	Herical cutting Slope machining Interpretation Linear axes Linear and rotational axes Standard, high spec It control II Ind Ind Ind Ind Ind Ind Ind I						
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions One-Touch Spre Gear machining Machining Navi Machining Navi Harmonic Spind Spindle dead-sle Synchronized C	Herical cutting Slope machining Interpretation Linear axes Linear and rotational axes Standard, high spec It control II Ind Ind Ind Ind Ind Ind Ind I						
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions One-Touch Spre Gear machining Machining Navi Machining Navi Harmonic Spind Spindle dead-sle Synchronized C Y-axis alignment	Herical cutting Slope machining Interpretation Linear axes Linear and rotational axes Standard, high spec It control II Ind Ind Ind Ind Ind Ind Ind I						
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions One-Touch Spre Gear machining Machining Navi Machining Navi Harmonic Spindle dead-sle Synchronized C Y-axis alignment Feed shaft retra	Herical cutting Slope machining Interpretation Linear axes Linear and rotational axes Standard, high spec It control II Interpretation Linear axes Linear and rotational axes Standard, high spec It control II Interpretation Linear axes L						
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions One-Touch Spre Gear machining Navi Machining Navi Harmonic Spindle dead-sle Synchronized C Y-axis alignment Feed shaft retrat Short circuit bre	Herical cutting Slope machining Internation Linear axes Linear and rotational axes Standard, high spec It control II International axes Example of the special control of the special cutting of the speci						
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions One-Touch Spre Gear machining Navi Machining Navi Harmonic Spindle dead-sle Synchronized C Y-axis alignment Feed shaft retrat Short circuit bre	Herical cutting Slope machining Interpretation Linear axes Linear and rotational axes Standard, high spec It control II Interpretation Linear axes Linear and rotational axes Standard, high spec It control II Interpretation Linear axes L						
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions One-Touch Spre Gear machining Navi Machining Navi Harmonic Spindle dead-sle Synchronized C Y-axis alignment Feed shaft retrat Short circuit bre	Herical cutting Slope machining Internation Linear axes Linear and rotational axes Standard, high spec It control II International axes Example of the special control of the special cutting of the speci						
Pitch error comp Hi-Cut Pro Super-NURBS 5-Axis Auto Tuning System Tool center poin Tool tilt comman Other Functions One-Touch Spre Gear machining Navi Machining Navi Harmonic Spindle dead-sle Synchronized C Y-axis alignment Feed shaft retrate Short circuit bre External M signal	Herical cutting Slope machining Internation Linear axes Linear and rotational axes Standard, high spec It control II International axes Example of the special control of the special cutting of the speci						

^{*1.} Engineering discussions required

OKUMA Corporation

Oguchi-cho, Niwa-gun, Aichi 480-0193, Japan TEL: +81-587-95-7825 FAX: +81-587-95-6074